首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siliceous oncoids, up to 4 cm in diameter, are common on the laterally extensive sinter aprons that surround the spectacular geysers and hot springs at El Tatio in northern Chile. Many of these complex oncoids developed close to geyser and spring vents that discharge boiling water. Internally the oncoids, which are composed of precipitated amorphous silica, are formed of complex arrays of spicules and concentric laminae as well as detrital volcanic grains. Spicular growth is dominant in most examples. The formation and growth of the spicules and concentric laminae were mediated by a microbial community which included filamentous microbes, mucus, and possibly bacteria. The microbes and mucus were silicified by replacement and encrustation. In some laminae the filamentous microbes lay parallel to the growth surface; in other laminae most filaments forming the thin mats were suberect. Amorphous silica precipitated between the filaments occluded porosity and commonly disguised the microbial fabric. The oncoids grew on the proximal sinter aprons around the geyser vents and hot spring pools. Most growth took place subaerially with the silica delivered to the precipitation sites by splashing water from the geysers and/or periodic shallow flooding of the discharge aprons. Unlike silica oncoids at other geothermal sites, vertical growth of oncoids that formed in some rimstone pools was not limited by water depth.  相似文献   

2.
Microbial biomineralization in submarine hydrothermal environments provides an insight into the formation of vent microfossils and the interactions between microbes, elements and minerals throughout the geological record. Here, we investigate microbial biomineralization of a deep-sea vent community in the Edmond vent field and provide ultrastructural evidence for the formation of microfossils and biogenic iron-rich minerals related to Archaea and Bacteria. Environmental scanning electron microscopy (ESEM) analysis shows that filamentous and spiral microbes are encrusted by a non-crystalline silica matrix and minor amounts of iron oxides. Examination by transmission electron microscopy (TEM) reveals acicular iron-rich particles and aggregates that occur either intracellularly or extracellularly. A culture-independent molecular phylogenetic analysis demonstrates a diverse range of Bacteria and Archaea, the majority of which are related to sulfur metabolism in the microbial mats. Both Archaea and Bacteria have undergone silicification, in a similar manner to microorganisms in some terrestrial hot springs and indicating that silicification may be driven by silica supersaturation and polymerization. Formation mechanisms of intracellular and extracellular iron oxides associated with microbes are discussed. These results enhance our understanding of microbial mineralization in extreme environments, which may be widespread in the Earth's modern and ancient hydrothermal vent fields.  相似文献   

3.
The siliceous sinter deposits of El Tatio geothermal field in northern Chile have been examined petrographically and mineralogically. These sinters consist of amorphous silica (opal-A) deposited around hot springs and geysers from nearly neutral, silica-saturated, sodium chloride waters. Water cooling and evaporation to dryness are the main processes that control the opal-A deposition in both subaqueous and subaerial settings, in close spatial relation to microbial communities. All fingerprints of organisms observed in the studied sinter samples represent microbes and suggest that the microbial community is moderately diverse (cyanobacteria, green bacteria, and diatoms). The most important ecological parameter is the temperature gradient, which is closely related to the observed depositional settings: 1) Geyser setting: water temperature = 70–86 °C (boiling point at El Tatio: 4200 m a.s.l.); coarse laminated sinter macrostructure with rapid local variations; biota comprises non-photosynthetic hyperthermophilic bacteria. 2) Splash areas around geysers: water temperature = 60–75 °C; laminated spicule and column macrostructure, locally forming cupolas (< 30 cm); predominant Synechococcus-like cyanobacteria. 3) Hot spring setting: water temperature = 40–60 °C; laminated spicules and columns and subspherical oncoids characterize the sinter macrostructure; filamentous cyanobacteria Phormidium and diatoms (e.g., Synedra sp.) are the most characteristic microbes. 4) Discharge environments: water temperature = 20–40 °C; sinter composed of laminated spicules and oncoids of varied shape; cyanobacterial mats of Phormidium and Calothrix and diatoms (e.g., Synedra sp.) are abundant. El Tatio is a natural laboratory of great interest because the sedimentary macrostructures and microtextures reflect the geological and biological processes involved in the primary deposition and early diagenesis of siliceous sinters.  相似文献   

4.
This study demonstrates discernible biosilicification of natural microbial mats through batch laboratory experiments. Identification of the geochemical requirements for this process to occur includes thermodynamically favorable, but sluggish silica reaction kinetics associated with acidic conditions, and the necessity for colloidal silica rather than dissolved silicic acid species. This study provides the first results to bridge the apparent literature discrepancy between widespread, in-situ observations of microbial silicification, and the inability to demonstrate a detectable microbial impact in this process under well-constrained laboratory conditions. We compared the silica scavenging abilities of three natural microbial mats collected from Yellowstone National Park (YNP) hotsprings, relative to those of both abiotic particle (TiO2) and solution controls at constant, near-saturated aqueous silica concentrations, while experimental pH and temperature conditions were varied, using both dissolved and colloidal SiO2 forms. We specifically evaluated three microbial mats sampled from YNP sites all exhibiting saturation with respect to amorphous SiO2, but possessing variable pH and temperature conditions that should reflect differential kinetics (and therefore biological opportunity) relative to silica polymerization: (1) most biologically favorable, acidic-mesophile (AM: pH 3, T = 35 °C); (2) biologically possible, but less opportune, alkaline, mesophile (ALK-M: pH 8, T = 35 °C) and (3) unlikely to be biologically favorable, alkaline-thermophile (ALK-T: pH 8, T = 80 °C). Comparison of field and laboratory results substantiates the requirements for thermodynamically favorable, but kinetically slower SiO2 polymerization conditions. Results show that acidic moderate temperature conditions were required for an observable biosilicification impact. Moreover, they also identified for the first time, the necessity specifically for colloidal silica forms which are surface bound under acidic pH conditions, to distinguish discernible biosilicification compared to mineral particle controls. Results also highlight the important influence of mat surface characteristics in this process, specifically the extent of live, non-mineralized, exposed biological mat surface. Greater colloidal SiO2 scavenging abilities are associated with non-mineralized microbial mat surfaces than with mineral particle surfaces or microbial mat surfaces encrusted with authigenic silica. These results are the first to demonstrate that biosilicification can be a microbially mediated, discernible geobiological process, shedding new light on the longstanding argument in the literature, and opening the door for more sensitive evaluation of this phenomenon in natural systems.  相似文献   

5.
This research provides an ancient analogue for biologically mediated dolomite precipitation in microbial mats and biofilms, and describes the involvement of highly structured extracellular polymeric secretion (EPS) templates in dolomite nucleation. The structure of EPS is shown to match the hexagonal–trigonal lattice geometry of dolomite, which favoured the epitaxial crystallization of dolomite on the organic substrate. This structure of EPS also matches the arrangement of silica nanospheres in opal, which further accounts for the organically‐templated formation of opal enabling the non‐replacive co‐existence of dolomite and silica. The study is focused on a 50 m thick dolomite succession that is exposed in central areas of the Tertiary Duero Basin and was deposited in a mudflat‐saline lake sedimentary complex during the Middle to Late Miocene (9 to 15 Ma). In the intermediate intervals of the succession, poorly indurated dolomite beds pass gradually into silica beds. On the basis of sedimentological, compositional, geochemical and petrographic data, silica and dolomite beds have been interpreted as mineralized microbial mats. The silica beds formed in marginal areas of the lake in response to intense evaporative concentrations; this resulted in the rapid and early precipitation of opal. Silicification accounted for the exceptional preservation of the microbial mat structure, including biofilms, filamentous and coccoid microbes, and EPS. Extracellular polymeric secretions have a layered structure, each layer being composed of fibres which are arranged in accordance with a reticular pattern, with frequent intersection angles at 120° and 60°. Therefore, the structure of EPS matches the lattice geometry of dolomite and the arrangement of silica nanospheres in opal. Additionally, EPS binds different elements, with preference to Si and Mg. The concurrence of suitable composition and surface lattice morphologies in the EPS favoured the crystallization of dolomite on the substrate. In some cases, dolomite nucleation took place epicellularly on coccoid micro‐organisms, which gave way to spheroid crystals. Organic surfaces enable the inorganic mineral precipitation by lowering the free energy barrier to nucleation. Most of the microbial mats probably developed on the lake floor, under sub‐aqueous conditions, where the decomposition of organic matter took place. The subsequent formation of openly packed dolomite crystals, with inter‐related Si‐enriched fibrils throughout, is evidence for the pre‐existence of fibrillar structures in the mats. Miocene dolomite crystals are poorly ordered and non‐stoichiometric, with a slight Ca‐excess (up to 5%), which is indicative of the low diagenetic potential the microbial dolomite has towards a more ordered and stoichiometric structure; this confirms that microbial imprints can be preserved in the geological record, and validates their use as biosignatures.  相似文献   

6.
Silicified deposits, such as sinters, occur in several modern geothermal environments, but the mechanisms of silicification (and crucially the role of microorganisms in their construction) are still largely unresolved. Detailed examination of siliceous sinter, in particular sections of microstromatolites growing at the Krisuvik hot spring, Iceland, reveals that biomineralization contributes a major component to the overall structure, with approximately half the sinter thickness attributed to silicified microorganisms. Almost all microorganisms observed under the scanning electron microscope (SEM) are mineralized, with epicellular silica ranging in thickness from < 5 μm coatings on individual cells, to regions where entire colonies are cemented together in an amorphous silica matrix tens of micrometres thick. Within the overall profile, there appears to be two very distinct types of laminae that alternate repeatedly throughout the microstromatolite: ‘microbial’ layers are predominantly consisting of filamentous, intact, vertically aligned, biomineralized cyanobacteria, identified as Calothrix and Fischerella sp.; and weakly laminated silica layers which appear to be devoid of any microbial component. The microbial layers commonly have a sharply defined base, overlying the weakly laminated silica, and a gradational upper surface merging into the weakly laminated silica. These cyclic laminations are probably explained by variations in microbial activity. Active growth during spring/summer allows the microorganisms to keep pace with silicification, with the cell surfaces facilitating silicification, while during their natural slow growth phase in the dark autumn/winter months silicification exceeds the bacteria’s ability to compensate (i.e. grow upwards). At this stage, the microbial colony is probably not essential to microstromatolite formation, with silicification presumably occurring abiogenically. When conditions once again become favourable for growth, recolonization of the solid silica surface by free‐living bacteria occurs: cell motility is not responsible for the laminations. We have also observed that microbial populations within the microstromatolite, some several mm in depth, appear viable, i.e. they still have their pigmentation, the trichomes are not collapsed, cell walls are unbroken, cytoplasm is still present and they proved culturable. This suggests that the bulk of silicification occurred rapidly, probably while the cells were still alive. Surprisingly, however, measurements of light transmittance through sections of the microstromatolite revealed that photosynthetically active light (PAL) only transmitted through the uppermost 2 mm. Therefore the ‘deeper’ microbial populations must have either: (i) altered their metabolic pathways; (ii) become metabolically inactive; or (iii) the deeper populations may be dominated by different microbial assemblages from that of the surface. From these collective observations, it now seems unequivocal that microstromatolite formation is intimately linked to microbial activity and that the sinter fabric results from a combination of biomineralization, cell growth and recolonization. Furthermore, the similarities in morphology and microbial component to some Precambrian stromatolites, preserved in primary chert, suggests that we may be witnessing contemporaneous biomineralization processes and growth patterns analogous to those of the early Earth.  相似文献   

7.
The abundance of As and Sb in aqueous, mineral and biological reservoirs was examined at El Tatio Geyser Field, a unique hydrothermal basin located in the Atacama Desert region of Chile. Here the concentration of total As and Sb in hydrothermal springs and discharge streams are the highest reported for a natural surface water, and the geyser basin represents a significant source of toxic elements for downstream users across Region II, Chile. The geyser waters are near neutral Na:Cl type with ∼0.45 and 0.021 mmol L−1 total As and Sb, respectively, primarily in the reduced (III) redox state at the discharge with progressive oxidation downstream. The ferric oxyhydroxides associated with the microbial mats and some mineral precipitates accumulate substantial As that was identified as arsenate by XAS analysis (>10 wt% in the mats). This As is easily mobilized by anion exchange or mild dissolution of the HFO, and the ubiquitous microbial mats represent a significant reservoir of As in this system. Antimony, in contrast, is not associated with the mineral ferric oxides or the biomats, but is substantially enriched in the silica matrix of the geyserite precipitates, up to 2 wt% as Sb2O3. Understanding the mobility and partitioning behavior of these metalloids is critical for understanding their eventual impact on regional water management.  相似文献   

8.
Brian Jones   《Sedimentary Geology》2009,219(1-4):302-317
Calcitic speleothems from a cave located on the north central coast of Grand Cayman commonly include corrosion surfaces that developed when calcite precipitation ceased and corrosion mediated by condensates became the operative process. Dissolution features associated with these surfaces, including etched crystal surfaces, microcavities, and solution-widened boundaries between crystals, are commonly occupied by microbes and microbial mats that have been replaced by calcium phosphate and/or coated with calcium phosphate. No mineralized microbes were found in the calcite crystals that form the speleothems. The morphology of the mineralized hyphae (eight morphotypes) and spores (nine morphotypes) are indicative of actinomycetes, a group of microbes that are ideally adapted to life in oligotrophic cave environs. Superb preservation of the delicate hyphae, aerial hyphae, and delicate ornamentation on the hyphae and spores indicate that the microbes underwent rapid mineralized while close to their original life positions. Although these actinomycetes were extremely susceptible to replacement by calcium phosphate, there is no evidence that they directly or indirectly controlled precipitation. Nevertheless, the association between the P-rich precipitates and microbes shows that the use of phosphorus as a proxy for seasonal climate changes in paleoclimate analyses must be treated with caution.  相似文献   

9.
In the course of experimenting on the laboratory silification of algal cells and algal mats a series of organosilicon compounds was employed in attempts to simulate fossilization. These compounds provided a silica source for emplacement in the organic matrices of the algae. It was found that during the silicification process silicon acetate, triethoxysilane propylamine and tetraethylorthosilicate (tetraethoxysilane) yielded hydrolytic products which supported growth of microbes. Large numbers of microorganisms: several fungi, including yeast and an Aspergillus sp. and Pseudomonas aeruginosa were isolated from salt solutions containing these organosilicon compounds as the sole source of carbon. The rate of hydrolysis yielding silica for emplacement was not affected by growth of these microorganisms. The isolation and growth of pure cultures of P. aeruginosa on either triethylsilane propylamine or tetraethylorthosilicate is described.  相似文献   

10.
《Applied Geochemistry》2006,21(11):1868-1879
Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats.Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g−1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g−1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L−1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site.  相似文献   

11.
Studies of modern cyanobacterial mats and biofilms show that they can precipitate minerals as a consequence of metabolic and degradational activities paired with ambient hydrochemical conditions. This study looked at modern microbial mats forming giant, tower‐like, groundwater‐fed, calcareous microbialites in the world's largest, highly alkaline lake; Van Gölü (Lake Van), East Turkey. Results show that microbial systems play a role not only in carbonate precipitation but also in the formation of siliceous mineral phases. Transmitted light microscopy, scanning electron microscopy and spectral observations revealed that, within the extracellular polymeric substances excreted by the mats abundant minute aragonite grains precipitated first in vivo. These minute grains were quickly succeeded and/or supplemented in the dead biomass of the cyanobacterial mat by authigenic Al–Mg–Fe siliceous phases. Silicon dioxide is available in large concentrations in the highly alkaline water of Lake Van. Divalent cations (Ca and Mg) are delivered to the microbialites mostly by groundwater springs. The precipitation of the fine‐grained siliceous phases is probably mediated by bacteria degrading the cyanobacterial biomass and complexing the excessive cations with their extracellular polymeric envelopes. The bacteria serve as nucleation centres for the subsequent precipitation of siliceous mineral phases. Generally, the biphasic (calcareous and siliceous) mineralization – characterizing Lake Van microbialites – is controlled by their interior highly dynamic hydrogeochemical situation. There, the dramatically different alkaline lake water and the Ca–Mg‐charged groundwater mix at various rates. The early diagenetic replacement of the in vivo aragonite by authigenic siliceous phases significantly increases the fossilization potential of the mat‐forming cyanobacteria. Lake Van and its giant microbialite tufa towers act as a model explaining the transformation of early diagenetic mineral phases observed in many modern and ancient carbonate marine deposits, particularly those influenced by diffusion of silica‐enriched and metal‐enriched pore waters from below the water–sediment interface.  相似文献   

12.
Well-preserved siliciclastic domal stromatolites, up to 2 m wide and 1·5 m high, are found in a 10 to 15 m thick interval within the Late Ordovician Eureka Quartzite of Southern Nevada and Eastern California, USA. These stromatolites appear as either isolated features or patchy clusters that contain more than 70% by volume quartz grains; their association with planar, trough and herringbone cross-bedding suggests that they were formed in an upper shoreface environment with high hydraulic energy. In this environment, sand bars or dunes may have provided localized shelter for initial microbial mat colonization. Biostabilization and early lithification of microbial mats effectively prevented erosion during tidal flushing and storm surges, and the prevalence of translucent quartz sand grains permitted light penetration into the sediment, leading to thick microbial mat accretion and the formation of domal stromatolites. Decimetre-scale to metre-scale stromatolite domes may have served as localized shelter and nucleation sites for further microbial mat colonization, forming patchy stromatolite clusters. Enrichment of iron minerals, including pyrite and hematite, within dark internal laminae of the stromatolites indicates anaerobic mineralization of microbial mats. The occurrence of stromatolites in the Eureka Quartzite provides an example of microbial growth in highly stressed, siliciclastic sedimentary environments, in which microbial communities may have been able to create microenvironments promoting early cementation/lithification essential for the growth and preservation of siliciclastic stromatolites.  相似文献   

13.
The sparse Archean fossil record is based almost entirely on carbonaceous remnants of microorganisms cellularly preserved due to their early post-mortem silicification. Hitherto as an exception, sedimentary carbonate rocks from the Neoarchean Nauga Formation of South Africa contain calcified microbial mats composed of microbiota closely resembling modern benthic colonial cyanobacteria (Chroococcales and Pleurocapsales). Their remains, visible under the scanning electron microscope (SEM) after etching of polished rock samples, comprise capsular envelopes, mucilage sheaths, and groups of cells mineralized by calcium carbonate with an admixture of Al–K–Mg–Fe silicates. The capsular organization of the mucilaginous sheaths surrounding individual cells and cell clusters forming colonies and the mode of mineralization are the characteristic common features of the Neoarchean microbiota described and their modern analogues. The new findings indicate massive production of calcium carbonates by benthic coccoid cyanobacteria in the Neoarchean, and offer a solution to the problem of the origin of Archean carbonate platforms, stromatolites and microbial reefs.  相似文献   

14.
Active, carbonate‐mineralizing microbial mats flourish in a tropical, highly evaporative, marine‐fed lagoonal network to the south of Cayo Coco Island (Cuba). Hypersaline conditions support the development of a complex sedimentary microbial ecosystem with diverse morphologies, a variable intensity of mineralization and a potential for preservation. In this study, the role of intrinsic (i.e. microbial) and extrinsic (i.e. physicochemical) controls on microbial mat development, mineralization and preservation was investigated. The network consists of lagoons, forming in the interdune depressions of a Pleistocene aeolian substratum; they developed due to a progressive increase in sea‐level since the Holocene. The hydrological budget in the Cayo Coco lagoonal network changes from west to east, increasing the salinity. This change progressively excludes grazers and increases the saturation index of carbonate minerals, favouring the development and mineralization of microbial mats in the easternmost lagoons. Detailed mapping of the easternmost lagoon shows four zones with different flooding regimes. The microbial activity in the mats was recorded using light–dark shifts in conjunction with microelectrode O2 and HS? profiles. High rates of O2 production and consumption, in addition to substantial amounts of exopolymeric substances, are indicative of a potentially strong intrinsic control on mineralization. Seasonal, climate‐driven water fluctuations are key for mat development, mineralization, morphology and distribution. Microbial mats show no mineralization in the permanently submersed zone, and moderate mineralization in zones with alternating immersion and exposure. It is suggested that mineralization is also driven by water‐level fluctuations and evaporation. Mineralized mats are laminated and consist of alternating trapping and binding of grains and microbially induced magnesium calcite and dolomite precipitation. The macrofabrics of the mats evolve from early colonizing Flat mats to complex Cerebroid or Terrace structures. The macrofabrics are influenced by the hydrodynamic regime: wind‐driven waves inducing relief terraces in windward areas and flat morphologies on the leeward side of the lagoon. Other external drivers include: (i) storm events that either promote (for example, by bioclasts covering) or prevent (for example, by causing erosion) microbial mat preservation; and (ii) subsurface degassing, through mangrove roots and desiccation cracks covered by Flat mats (i.e. forming Hemispheroids and Cerebroidal structures). These findings provide in‐depth insights into understanding fossil microbialite morphologies that formed in lagoonal settings.  相似文献   

15.
A slightly acidic hot spring named "Female Tower"(t=73.5°C, pH=6.64) is located in the Jifei Geothermal Field, Yunnan Province, southwestern China. The precipitates in the hot spring are composed of large amounts of calcite, aragonite and sulfur. Scanning electron microscopy(SEM) analyses reveal that the microbial mats were formed from various coccoid or rod-shaped filamentous microbes. Transmission electron microscopy(TEM) shows that the intracellular sulfur granules are commonly associated with these microbes. A culture-independent molecular phylogenetic analysis demonstrates that the majority of the bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H_2S concentration is up to 60 ppm, while SO_4~(2-) concentration is only about 10 ppm. We speculate that H_2S might derive from sulfur-oxidizing bacteria in this hot spring water, leading to the intracellular formation of sulfur granules. Meanwhile, this reaction increased the p H in the micronscale microdomains, which fosters the precipitation of calcium carbonate in the microbial mats. The results of this study indicate that the sulfur-oxidizing bacteria might play an important role in calcium carbonate precipitation in slightly acidic hot spring environments.  相似文献   

16.
Processes of carbonate precipitation in modern microbial mats   总被引:20,自引:0,他引:20  
Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved.Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the “alkalinity” engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.  相似文献   

17.
Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for exploration.  相似文献   

18.
梅朝佳 《古地理学报》2018,20(3):453-464
作为微生物碳酸盐岩的主要类型之一,叠层石是微生物席的主要建造物已成为共识。天津蓟县中元古界铁岭组二段叠层石生物礁灰岩发育,其中的细粒叠层石被前人解释为微生物席捕获碳酸盐泥的微生物建造物,使得其既不同于现代叠层石,也不同于显生宙尤其是寒武纪的叠层石。更为特殊的是,这些叠层石中的海绿石和黄铁矿代表着2种特殊的矿化作用,其中研究区普遍产出的黄铁矿,作为硫酸盐还原细菌的产物,是了解古代微生物的窗口;而发育在高能浅海的海绿石,产出环境不同于现代海绿石,不能作为慢速沉积环境的指示矿物,亦不具有沉积间断的地质意义。2种矿化作用表明铁岭组叠层石是由沉淀作用而非捕获碳酸盐泥形成,这为了解中元古代叠层石的形成和特征提供了一些有益的线索。  相似文献   

19.
鲕粒作为碳酸盐岩中非常重要的指相颗粒,其研究主要集中在成因上面,而成岩作用研究较少。北京西山地区下苇甸剖面寒武系张夏组发育大套鲕粒灰岩,通过对该剖面野外实测、薄片观察、XRD测试等手段,结合有机碳、热解等地化参数,对鲕粒的硅化机制及其硅质来源做了系统的研究。结果表明,鲕粒溶蚀再沉淀或者新生变形作用造成鲕粒边缘有机质富集,有机质演化释放的有机酸是硅质沉淀的主要因素,硅质来源主要为陆源输入和黏土矿物的转化。由于有机质主要富集在鲕粒边缘,形成有机质膜,从而造成硅质的沉淀主要沿鲕粒边缘发生,形成鲕粒边缘特有的硅化套,这种结果也从侧面反映了微生物在原始鲕粒形成中发挥了重要作用。  相似文献   

20.
Lilypad stromatolites, up to 3 m long and 1·5 m wide, were found to be actively growing in the shallow marginal waters of Frying Pan Lake and its outflow channel. These stromatolites, composed of Phormidium (> 90%), Fischerella, and a variety of other microbes, develop through a series of distinct growth stages. Dark green microbial mats cover the floor of the outflow channel and give rise to columns of various sizes and shapes in the shallower marginal waters. Once the columns reach the water level, the mats spread laterally to form a lilypad stromatolite. The lilypads are characterized by a raised, dark green rim, 4–5 mm high, that encircles a flat interior covered with a distinctive orange-red mat. The microbes forming the columns and lilypad plate are being actively silicified. The stromatolites are formed of: (i) flat-lying Phormidium filaments (P-laminae), (ii) upright filaments of Phormidium that are commonly associated with Fischerella (U-laminae), and (iii) mucus, diatoms and pyrite framboids (M-laminae). P-laminae dominate most of the columns, with tripartite cycles of P-, U-, to M-laminae being found mostly in the upper parts of the stromatolites. The transition from the P- to U-laminae is marked by a change in the growth pattern of the Phormidium and branching of Fischerella, which was probably triggered by a change in environmental conditions. In the Frying Pan Lake outflow channel, this change may be related to fluctuations in water level and flow rates that are caused by periods of heavy rain, seasonal changes, long-term variations in rainfall, and/or the unique 40-day hydrological cycle that exists between Frying Pan Lake and Inferno Crater, which is a nearby hydrothermal crater lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号