首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscoelastic (VE) dampers and active control (AC) systems are studied together as a hybrid system for their effectiveness in reducing the response of seismic structures. VE dampers have properties which are both frequency and temperature-dependent. On the other hand, AC systems for seismic structures require rather large control forces in order to be effective. The possibility of combining VE dampers and AC systems to improve the performance of both systems is examined. It is found that for the same response reduction, the addition of VE dampers to an AC system reduces the required control forces considerably, which reduces the cost of the AC system. The addition of the AC system helps improve the velocity performance of VE dampers and considerably reduces the possibility of shear failure of the viscoelastic material. Two procedures for evaluating the damping effect of the VE dampers are suggested which can be applied to either shear-type or framed structures. Two control algorithms based on drift and velocity/acceleration feedback are compared to existing algorithms. A method of determining the weighting matrices of an AC system is presented which reduces the required control forces for certain control algorithms.  相似文献   

2.
基于带粘弹性阻尼器钢框架结构振动台试验,提出了基于OpenSees的阻尼器尺寸选择方法。首先,通过试验获得一种特定尺寸阻尼器的滞回曲线,根据粘弹性阻尼器相似理论,将其转换为一系列不同尺寸的阻尼器滞回曲线。使用Bouc-Wen模型对它们进行参数识别并添加到结构分析模型中,利用OpenSees软件对添加阻尼器结构和纯框架结构进行不同水准的3条地震波下动力时程分析。最后,通过综合考查阻尼器的减震效果和最大应变来确定合适的用于振动台试验当中的阻尼器尺寸。结果表明,本方法可避免对不同尺寸阻尼器逐个进行性能试验,Bouc-Wen模型可较准确地模拟阻尼器力学性能,OpenSees非线性动力时程分析可准确模拟试验过程,根据提出的选择指标能简单方便地确定阻尼器的尺寸。  相似文献   

3.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

4.
Viscoelastic (VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well.  相似文献   

5.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Viscoelastic (VE) dampers are sensitive to temperature, excitation frequency, and strain level. As they dissipate the kinetic energy from earthquake or wind-induced structural vibrations, their temperature increases from the heat generated, consequently softening their VE materials and lowering their dynamic mechanical properties. Temperature increase can be significant for long-duration loading, but can be limited by heat conduction and convection which depend on damper configuration. The writers analytically explored such effect on the six different dampers by using their previously proposed three-dimensional finite-element analysis method. Results provided better understanding of how heat is generated within the VE material, conducted and stored in different damper parts, and dispersed to the surrounding air. These results also led to characterization of both local (e.g., temperatures, properties, and strain energy density) and global (e.g., hysteresis loops, and stiffness) behavior of VE dampers, and provided a framework for a new simplified one-dimensional (1D) modeling approach for time-history analysis. This new proposed 1D method greatly improves the computation time of the previously proposed long-duration method coupling fractional time-derivatives VE constitutive rule with 1D heat transfer analysis. Unlike the previous method, it idealizes uniform shear strain and VE material property distributions for computational efficiency, but still simulating non-uniform temperature distribution along the thickness direction of the VE material. Despite the approximations, it accurately predicts VE damper global responses.  相似文献   

7.
Optimal design of viscoelastic dampers using eigenvalue assignment   总被引:1,自引:0,他引:1  
In this study a procedure for determining the optimum size and location of viscoelastic dampers is proposed using the eigenvalue assignment technique. Natural frequencies and modal damping ratios, required to realize a given target response, are determined first by the convex model. Then the desired dynamic structural properties are realized by optimally distributing the damping and stiffness coefficients of viscoelastic dampers using non‐linear programming based on the gradient of eigenvalues. This optimization method provides information on the optimal location as well as the magnitude of the damper parameters. The proposed procedure is applied to the retrofit of a 10‐story shear frame, and to a three‐dimensional structure with an asymmetric plan. The analysis results confirm that the responses of model structures retrofitted by the proposed method correspond well with the given target response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Investigated is the accuracy in estimating the response of asymmetric one‐storey systems with non‐linear viscoelastic (VE) dampers by analysing the corresponding linear viscous system wherein all non‐linear VE dampers are replaced by their energy‐equivalent linear viscous dampers. The response of the corresponding linear viscous system is determined by response history analysis (RHA) and by response spectrum analysis (RSA) extended for non‐classically damped systems. The flexible and stiff edge deformations and plan rotation of the corresponding linear viscous system determined by the extended RSA procedure is shown to be sufficiently accurate for design applications with errors generally between 10 and 20%. Although similar accuracy is also shown for the ‘pseudo‐velocity’ of non‐linear VE dampers, the peak force of the non‐linear VE damper cannot be estimated directly from the peak damper force of the corresponding linear viscous system. A simple correction for damper force is proposed and shown to be accurate (with errors not exceeding 15%). For practical applications, an iterative linear analysis procedure is developed for determining the amplitude‐ and frequency‐dependent supplemental damping properties of the corresponding linear viscous system and for estimating the response of asymmetric one‐storey systems with non‐linear VE dampers from the earthquake design (or response) spectrum. Finally, a procedure is developed for designing non‐linear supplemental damping systems that satisfy given design criteria for a given design spectrum. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Investigated are earthquake responses of one‐way symmetric‐plan, one‐storey systems with non‐linear fluid viscous dampers (FVDs) attached in series to a linear brace (i.e. Chevron or inverted V‐shape braces).Thus, the non‐linear damper is viscous when the brace is considered rigid or viscoelastic (VE) when the brace is flexible. The energy dissipation capacity of a non‐linear FVD is characterized by an amplitude‐dependent damping ratio for an energy‐equivalent linear FVD, which is determined assuming the damper undergoes harmonic motion. Although this formulation is shown to be advantageous for single‐degree‐of‐freedom (SDF) systems, it is difficult to extend its application to multi‐degree‐of‐freedom (MDF) systems for two reasons: (1) the assumption that dampers undergo harmonic motion in parameterizing the non‐linear damper is not valid for its earthquake‐induced motion of an MDF system; and (2) ensuring simultaneous convergence of all unknown amplitudes of dampers is difficult in an iterative solution of the non‐linear system. To date, these limitations have precluded the parametric study of the dynamics of MDF systems with non‐linear viscous or VE dampers. However, they are overcome in this investigation using concepts of modal analysis because the system is weakly non‐linear due to supplemental damping. It is found that structural response is only weakly affected by damper non‐linearity and is increased by a small amount due to bracing flexibility. Thus, the effectiveness of supplemental damping in reducing structural responses and its dependence on the planwise distribution of non‐linear VE dampers were found to be similar to that of linear FVDs documented elsewhere. As expected, non‐linear viscous and VE dampers achieve essentially the same reduction in response but with much smaller damper force compared to linear dampers. Finally, the findings in this investigation indicate that the earthquake response of the asymmetric systems with non‐linear viscous or VE dampers can be estimated with sufficient accuracy for design applications by analysing the same asymmetric systems with all non‐linear dampers replaced by energy‐equivalent linear viscous dampers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A general method is developed for optimal application of dampers and actuators by installing them at optimal location on seismic-resistant structures. The study includes development of a statistical criterion, formulation of a general optimization problem and establishment of a solution procedure. Numerical analysis of the seismic response in time-history of controlled structures is used to verify the proposed method for optimal device application and to demonstrate the effectiveness of seismic response control with optimal device location. This study shows that the proposed method for the optimal device application is simple and general, and that the optimally applied dampers and actuators are very efficient for seismic response reduction.  相似文献   

11.
The feasibility of using viscoelastic (VE) dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of VE dampers are briefly described. A procedure for evaluating the VE damping effect when added to a structure is proposed in which the damping effect of VE dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.  相似文献   

12.
Most past researches relevant to viscoelastic (VE) dampers, regardless of analytical and experimental ones, aimed at their design (or pre-damage) performance. In reality, however, under maximum considered or greater shaking caused by earthquakes, the shear deformation of the VE dampers installed in a structure may exceed or is even much larger than their nominal design range, thus leading to damage to the VE material. Under this circumstance, the structural design might become not conservative when the viscoelastically damped structure is a retrofit design or is not a supplemental damping design. Therefore, in this study, the beyond design and residual performances of the full-scale VE dampers after suffering damage are experimentally probed and compared with their design (or pre-damage) performance tested before. To have more engineering sense in practice, some suitable and conservative empirical post-damage models through considering reduction factors in the Kelvin-Voigt model for assessing the beyond design and residual performances of the full-scale VE dampers after suffering damage are recommended.  相似文献   

13.
本文通过Maxwell模型模拟的黏滞阻尼器连接的2种不同相邻结构的地震反应分析,对阻尼器设置的位置和阻尼参数进行了同时优化。在El Centro波、Tianjin波和Taft波3种较典型的地震动作用下,分别对不同质量比和不同刚度比的主、子结构在无阻尼和有阻尼情况下进行了地震反应分析,并以主结构的顶层最大相对位移最小作为优化目标,寻求出最优的阻尼器摆放位置以及对应的最优阻尼系数。结果显示,当阻尼器选择合适的安放位置和合理的阻尼参数时,主、子结构的地震反应都会有一定程度的降低,从而收到较好的减震效果。  相似文献   

14.
In this study, a direct static design method for structures with metal yielding dampers is proposed based on a new design target called the seismic capacity redundancy indicator (SCRI). The proposed method is applicable to the design of elastic‐plastic damped structures by considering the influence of damper on different structural performance indicators separately without the need for iteration or nonlinear dynamic analysis. The SCRI—a quantitative measure of the seismic capacity redundancy—is defined as the ratio of the seismic demand required by the target performance limit to the design seismic demand. Changes in the structural SCRI are correlated with the parameters of the supplemental dampers so that the dampers can be directly designed according to a given target SCRI. The proposed method is illustrated through application to a 12‐story reinforced‐concrete frame, and increment dynamic analysis is performed to verify the effectiveness of the proposed method. The seismic intensity corresponding to the target structural performance limit is regarded as a measure of the structural seismic capacity. The required seismic intensity increases after the structure is equipped with the designed metal yielding dampers according to the expected SCRI. It is concluded that the proposed method is easy to implement and feasible for performance‐based design of metal yielding dampers.  相似文献   

15.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Design parameters for single- and multiple-tuned liquid column dampers for reducing the response of structures to seismic excitations are presented. A deterministic analysis is carried out using 72 earthquake ground motion records to determine the tuning ratio, tube width to liquid length ratio, and head loss coefficient corresponding to a given mass ratio for single-tuned liquid column dampers. A similar analysis is performed to determine the central tuning ratio, tuning bandwidth, and grouping of dampers for multiple-tuned liquid column dampers. The study indicates that by properly selecting the design parameters, single- and multiple-tuned liquid column dampers can reduce the response of structures to seismic excitation by up to 45 per cent. Design examples using single- and multiple-tuned liquid column dampers in a bridge and a ten-storey building are presented to illustrate how the parameters are selected and to demonstrate the performance of the devices under different ground excitations. The response of several structures with tuned liquid column dampers is compared with that using tuned mass dampers where it is shown that both devices result in comparable reductions in the response. © 1998 John Wiley & Sons, Ltd. This paper was produced under the auspices of the U.S. Government and it is therefore not subject to copyright in the U.S.  相似文献   

17.
非线性粘滞阻尼器消能结构减振效果分析   总被引:5,自引:1,他引:4  
应用并完善了非线性粘滞阻尼器消能结构地震反应预测的反应谱方法,通过与时程分析计算结果对比证明了方法的可行性。利用本方法研究了支撑刚度及阻尼器参数对非线性粘滞阻尼器减振效果的影响。通过数值分析,给出了位移降低率达到最佳时支撑刚度取值的建议式。提出了为保证剪力降低率不大于1时非线性粘滞阻尼器参数的控制方法。  相似文献   

18.
黏滞阻尼器作为一种有效的消能减震装置,已在钢结构建筑中得到了大量应用.然而由于钢结构的延性和阻尼特征,实用的钢结构附加黏滞阻尼器设计方法仍需深度探讨.文中提出一种基于黏滞阻尼器延性需求的减震设计方法.首先,根据钢结构需求量化层间位移角性能目标及目标附加阻尼比,计算黏滞阻尼器延性需求,并确定黏滞阻尼器布置数量、进行控制效...  相似文献   

19.
安装形状记忆合金阻尼器的剪力墙结构抗震性能分析   总被引:1,自引:0,他引:1  
为减轻钢筋混凝土剪力墙连梁的地震后永久性损伤,同时保持连梁的耗能机制,本文提出在剪力墙连梁中安装新型形状记忆合金(Shape Memory Alloy,简称SMA)阻尼器,并研究该阻尼器对剪力墙结构地震响应的减震效果。通过一幢12层剪力墙结构地震反应的时程分析,研究了SMA阻尼器的附加刚度比和屈服位移比两项特征参数对结构地震反应控制效果的影响规律。计算分析结果表明,当附加刚度比为0.04~0.05,屈服位移比为0.4~0.5时,可以获得较好的减震效果。  相似文献   

20.
非线性粘滞阻尼器消能结构设计方法探讨   总被引:2,自引:0,他引:2  
蒋通  贺磊 《世界地震工程》2007,23(1):134-140
在建立非线形粘滞阻尼器消能结构性能曲线的基础上,建议了依据减震性能目标确定阻尼器参数的概略设计方法。提出了多自由度非线性粘滞阻尼器消能结构的等效阻尼比计算公式。在此基础上建议了适用于多自由度非线性粘滞阻尼器消能结构地震反应预测的模态叠加法,方法与时程分析结果对比吻合良好。为使各层阻尼器参数更好地满足减震性能要求,提出了将概略设计得到的层阻尼器参数依据减振性能目标进行调整的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号