首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most past researches relevant to viscoelastic (VE) dampers, regardless of analytical and experimental ones, aimed at their design (or pre-damage) performance. In reality, however, under maximum considered or greater shaking caused by earthquakes, the shear deformation of the VE dampers installed in a structure may exceed or is even much larger than their nominal design range, thus leading to damage to the VE material. Under this circumstance, the structural design might become not conservative when the viscoelastically damped structure is a retrofit design or is not a supplemental damping design. Therefore, in this study, the beyond design and residual performances of the full-scale VE dampers after suffering damage are experimentally probed and compared with their design (or pre-damage) performance tested before. To have more engineering sense in practice, some suitable and conservative empirical post-damage models through considering reduction factors in the Kelvin-Voigt model for assessing the beyond design and residual performances of the full-scale VE dampers after suffering damage are recommended.  相似文献   

2.
Viscoelastic (VE) dampers are sensitive to temperature, excitation frequency, and strain level. As they dissipate the kinetic energy from earthquake or wind-induced structural vibrations, their temperature increases from the heat generated, consequently softening their VE materials and lowering their dynamic mechanical properties. Temperature increase can be significant for long-duration loading, but can be limited by heat conduction and convection which depend on damper configuration. The writers analytically explored such effect on the six different dampers by using their previously proposed three-dimensional finite-element analysis method. Results provided better understanding of how heat is generated within the VE material, conducted and stored in different damper parts, and dispersed to the surrounding air. These results also led to characterization of both local (e.g., temperatures, properties, and strain energy density) and global (e.g., hysteresis loops, and stiffness) behavior of VE dampers, and provided a framework for a new simplified one-dimensional (1D) modeling approach for time-history analysis. This new proposed 1D method greatly improves the computation time of the previously proposed long-duration method coupling fractional time-derivatives VE constitutive rule with 1D heat transfer analysis. Unlike the previous method, it idealizes uniform shear strain and VE material property distributions for computational efficiency, but still simulating non-uniform temperature distribution along the thickness direction of the VE material. Despite the approximations, it accurately predicts VE damper global responses.  相似文献   

3.
This paper presents an experimental study on the performance of a shear-sliding stud-type damper composed of multiple friction units with high-tension bolts and disc springs. A numerical evaluation of the response reduction effects achieved by the stud-type damper is also presented. In dynamic loading tests, the behavior of stud-type multiunit friction damper specimens was investigated. Three different full-scale damper specimens, which were composed of five, six, or seven friction units with two or four sliding surfaces, were incorporated into loading devices for testing. The stud-type friction dampers demonstrated stable rigid-plastic hysteresis loops without any remarkable decrease in the sliding force even when subjected to repetitive loading, in addition to showing no unstable behavior such as lateral buckling. The damper produced a total sliding force approximately proportional to the number of sliding surfaces and friction units. The total sliding force of the stud-type damper can thus be estimated by summing the contributions of each friction unit. In an earthquake response simulation, the control effects achieved by stud-type dampers incorporated into an analytical high-rise building model under various input waves, including long-period, long-duration and pulse-like ground motions, were evaluated. A satisfactory response reduction was obtained by installing the developed stud-type dampers into the main frame without negatively impacting usability and convenience in terms of building planning.  相似文献   

4.
This paper presents the results of an experimental and analytical/computational study of the performance of multi‐unit particle dampers with an MDOF system. A series of shaking table tests of a three‐storey steel frame with the particle damper system were carried out to evaluate the performance of the system and to verify the analysis method. An analytical solution based on the discrete element method is also presented. A comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system under earthquake excitations can be obtained. These results also indicate that the excitation characterization influences the performance of the particle damper system, for example, particle dampers have good performance in reducing the seismic response of structures and particle movements of plug flow pattern can yield good vibration attenuation effects. It is shown that by using properly designed multi‐unit particle dampers, a lightly damped primary system can achieve a reasonable reduction in its response, with a small weight penalty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Viscoelastic (VE) dampers and active control (AC) systems are studied together as a hybrid system for their effectiveness in reducing the response of seismic structures. VE dampers have properties which are both frequency and temperature-dependent. On the other hand, AC systems for seismic structures require rather large control forces in order to be effective. The possibility of combining VE dampers and AC systems to improve the performance of both systems is examined. It is found that for the same response reduction, the addition of VE dampers to an AC system reduces the required control forces considerably, which reduces the cost of the AC system. The addition of the AC system helps improve the velocity performance of VE dampers and considerably reduces the possibility of shear failure of the viscoelastic material. Two procedures for evaluating the damping effect of the VE dampers are suggested which can be applied to either shear-type or framed structures. Two control algorithms based on drift and velocity/acceleration feedback are compared to existing algorithms. A method of determining the weighting matrices of an AC system is presented which reduces the required control forces for certain control algorithms.  相似文献   

6.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

7.
A series of shake-table tests was conducted by inserting and replacing 4 different types of dampers, or by removing them in a full-scale 5-story steel frame building. The objective is to validate response-control technologies that are increasingly adopted for major Japanese buildings without being attested to-date by a major earthquake. Test results are briefly described, and good performance of the dampers and frame demonstrated. The concepts of the full-scale building tests and various contributions are discussed. The difficulty associated with full-scale dynamic testing is explained.  相似文献   

8.
A series of shake-table tests was conducted by inserting and replacing 4 different types of dampers,or by removing them in a full-scale 5-story steel frame building. The objective is to validate response-control technologies that are increasingly adopted for major Japanese buildings without being attested to-date by a major earthquake. Test results are briefly described,and good performance of the dampers and frame demonstrated. The concepts of the full-scale building tests and various contributions are discussed. The difficulty associated with full-scale dynamic testing is explained.  相似文献   

9.
A reliable performance of anti‐seismic devices when the upper‐structure is subjected to strong biaxial seismic excitation is of vital importance to ensure the latter doesn't reach critical behavior. U‐shaped steel dampers are hysteretic devices used to dissipate the earthquake‐induced energy of base‐isolated structures. In the framework of performance‐based design, which is gaining more and more recognition, it is of particular importance to assess the performance of base‐isolated structures with such dampers under different intensity levels of bidirectional ground motion. To achieve this goal, an analytical model able to simulate the bidirectional displacement response of an isolation system is adopted. Incremental dynamic analysis (IDA) is used to obtain the relation between the earthquake‐induced bidirectional damage of U‐shaped steel dampers and different intensity levels of the considered records. The performance of the dampers is categorized into 5 levels delimited by 4 limit states for which fragility curves are derived. The results obtained using the bidirectional approach are quantitatively compared to those given by employing an in‐plane model (widely used in current design practices in Japan) with the purpose of assessing whether the latter provides unconservative estimates of the performance of the dampers. The main conclusion is that, for large seismic intensities, the safety margin against fracture of the dampers is significantly overestimated when an in‐plane model is adopted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.  相似文献   

11.
The paper introduces a synthetic optimization analysis method of structures with viscoelastic (VE) dampers, namely the simplex method. The optimal parameters and location of VE dampers can be determined by this method. Numerical example and a shaking table test about reinforced concrete structures with VE dampers show that the seismic responses of structures will be reduced more effectively when the parameters and location of VE dampers are designed in accordance with the results calculated by the simplex method.  相似文献   

12.
铅粘弹性阻尼器性能试验研究   总被引:14,自引:0,他引:14  
本文介绍了作者提出的铅粘弹性阻尼器的构造和原理,对铅粘弹性阻尼器在不温度,频率,应应幅值和粘弹性层厚度的情况下进行了试验,分析研究了温度,频率,应变幅值和粘弹性层度对铅粘弹性阻尼器性能的影响规律,同时,对铅粘弹性阻尼器进行了低周疲劳试验和大变形试验,考察了铅粘弹性阻尼器的疲劳性能和极限变形能力,最后给出了有关的结论和建议。  相似文献   

13.
In this study,a novel rotational damper called a Rotational Friction Viscoelastic Damper(RFVD) is introduced.Some viscoelastic pads are added to the Rotational Friction Damper(RFD) in addition to the friction discs used in this conventional device.Consequently,the amount of energy dissipated by the damper increases in low excitation frequencies.In fact,the input energy to the structure is simultaneously dissipated in the form of friction and heat by frictional discs and viscoelastic pads.In order to compare the performance of this novel damper with the earlier types,a set of experiments were carried out.According to the test results,the RFVD showed a better performance in dissipating input energy to the structure when compared to the RFD.The seismic behavior of steel frames equipped with these dampers was also numerically evaluated based on a nonlinear time history analysis.The numerical results verifi ed the performance of the dampers in increasing the energy dissipation and decreasing the energy input to the structural elements.In order to achieve the maximum dissipated energy,the dampers need to be installed in certain places called critical points in the structure.An appropriate approach is presented to properly fi nd these points.Finally,the performance of the RFVDs installed at these critical points was investigated in comparison to some other confi gurations and the validity of the suggested method in increasing the energy dissipation was confi rmed.  相似文献   

14.
A user-programmable computational/control platform was developed at the University of Toronto that offers real-time hybrid simulation (RTHS) capabilities. The platform was verified previously using several linear physical substructures. The study presented in this paper is focused on further validating the RTHS platform using a nonlinear viscoelastic-plastic damper that has displacement, frequency and temperature-dependent properties. The validation study includes damper component characterization tests, as well as RTHS of a series of single-degree-of-freedom (SDOF) systems equipped with viscoelastic-plastic dampers that represent different structural designs. From the component characterization tests, it was found that for a wide range of excitation frequencies and friction slip loads, the tracking errors are comparable to the errors in RTHS of linear spring systems. The hybrid SDOF results are compared to an independently validated thermalmechanical viscoelastic model to further validate the ability for the platform to test nonlinear systems. After the validation, as an application study, nonlinear SDOF hybrid tests were used to develop performance spectra to predict the response of structures equipped with damping systems that are more challenging to model analytically. The use of the experimental performance spectra is illustrated by comparing the predicted response to the hybrid test response of 2DOF systems equipped with viscoelastic-plastic dampers.  相似文献   

15.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.  相似文献   

16.
This paper presents a theoretical investigation on the performance of multiple‐tuned liquid column dampers (MTLCD) for reducing torsional vibration of structures in comparison with single‐tuned liquid column dampers (STLCD). The analytical model is first developed for torsional vibration of a structure with an MTLCD under either harmonic excitation or white noise excitation. The experimental results are then used to verify the analytical model for coupled MTLCD‐structure systems under harmonic excitation. The performance of an MTLCD and its beneficial parameters for achieving the maximum torsional response reduction to white noise excitation are finally investigated through an extensive parametric study in terms of the distance from the centre line of the MTLCD to the rotational axis of the structure, the ratio of the horizontal length to the total length of liquid column, frequency bandwidth, head‐loss coefficient, the number of TLCD units in an MTLCD, frequency‐turning ratio and the spectral level of excitation moment. The results show that there is an optimal head‐loss coefficient and an optimal frequency bandwidth for an MTLCD to achieve the maximum torsional response reduction. It is also demonstrated that the sensitivity of an optimized MTLCD to the frequency‐tuning ratio is less than that of an optimized STLCD, and it can be further improved by increasing the bandwidth but at the cost of less torsional vibration reduction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
摩擦耗能器的类型与性能及其在实际工程中的应用   总被引:2,自引:0,他引:2  
摩擦耗能器是一种构造简单、耗能机理明确、耗能能力大且性能稳定的耗能减震装置,在实际工程中已得到较为广泛的应用.主要介绍不同类型摩擦耗能器的构造与性能及其在实际工程中的应用,并提出了摩擦耗能器在开发与应用中需进一步研究解决的问题.  相似文献   

18.
The ambient and forced vibration techniques for testing full-scale structures are critically compared. Both methods, based on small level excitation, may be used to determine many mode shapes and frequencies of vibration and the corresponding damping values, with adequate accuracy for most purposes. The two techniques give mutually consistent results. The mode amplitudes determined by ambient and forced vibration tests show systematic departure for high modes and near the top levels of buildings tested. This phenomenon is attributed to the participation of all mode shapes and is a consequence of excitation by a concentrated force near the top of a building and at a frequency differing by only a few per cent from a natural frequency of vibrations. A new way of showing the effect of unwanted modes on the response near resonance of the mode being sought is developed. It is particularly useful for the analysis of steady, forced vibration tests of structures using eccentric mass vibration generators.  相似文献   

19.
This paper describes an analytical investigation on a reinforced concrete lateral load resisting structural system comprising a pin‐supported (base‐rocking) shear wall coupled with a moment frame on 1 or both sides of the wall. Yielding dampers are used to provide supplemental energy dissipation through the relative displacements at the vertical connections between the wall and the frames. The study extends a previous linear‐elastic model for pin‐supported wall‐frame structures by including the effects of the dampers. A closed‐form solution of the lateral load behavior of the structure is derived by approximating the discrete wall‐frame‐damper interactions with distributed (ie, continuous) properties. The validity of the model is verified by comparing the closed‐form results with computational models using OpenSees program. Then, a parametric analysis is conducted to investigate the effects of the wall, frame, and damper stiffness on the behavior of the structure. It is found that the damper stiffness significantly affects the distribution of shear forces and bending moments over the wall height. Finally, the performance‐based plastic design approach extended to the wall‐frame‐damper system is proposed. Case studies are carried out to design 2 damped pin‐supported wall‐frame structures using the proposed approach. Nonlinear dynamic time‐history analyses are conducted to verify the effectiveness of this method. Results indicate that the designed structures can achieve the performance level with the story drift ratios less than target values, and weak‐story failure mechanism is not observed. The approach can be used in engineering applications.  相似文献   

20.
Investigated is the accuracy in estimating the response of asymmetric one‐storey systems with non‐linear viscoelastic (VE) dampers by analysing the corresponding linear viscous system wherein all non‐linear VE dampers are replaced by their energy‐equivalent linear viscous dampers. The response of the corresponding linear viscous system is determined by response history analysis (RHA) and by response spectrum analysis (RSA) extended for non‐classically damped systems. The flexible and stiff edge deformations and plan rotation of the corresponding linear viscous system determined by the extended RSA procedure is shown to be sufficiently accurate for design applications with errors generally between 10 and 20%. Although similar accuracy is also shown for the ‘pseudo‐velocity’ of non‐linear VE dampers, the peak force of the non‐linear VE damper cannot be estimated directly from the peak damper force of the corresponding linear viscous system. A simple correction for damper force is proposed and shown to be accurate (with errors not exceeding 15%). For practical applications, an iterative linear analysis procedure is developed for determining the amplitude‐ and frequency‐dependent supplemental damping properties of the corresponding linear viscous system and for estimating the response of asymmetric one‐storey systems with non‐linear VE dampers from the earthquake design (or response) spectrum. Finally, a procedure is developed for designing non‐linear supplemental damping systems that satisfy given design criteria for a given design spectrum. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号