首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南极格罗夫山普通球粒陨石的岩石学和矿物学特征及分类   总被引:1,自引:0,他引:1  
从南极格罗夫山地区回收的11个陨石均具有球粒结构,确定为普通球粒陨石。研究了这些陨石的岩相学特征和矿物化学特征,进行了化学群-岩石类型的划分。结果表明,在所研究的11个普通球粒陨石中,4个为H群,6个为L群,1个为LL群。其中GRV 020010(LL3)和GRV 021481(H3)的两个陨石是稀少的、在我国尚末见过的非平衡普通球粒陨石。进行了陨石磁化率的测试,初步探讨了磁化率在陨石化学群分类中的作用。  相似文献   

2.
富尖晶石球粒状CAI(富Ca-Al难熔包体)是球粒陨石中一种特殊类型的CAI,在南极格罗夫山碳质球粒陨石GRV020025和GRV021579中共发现两个富尖晶石球粒状CAI———GRV020025-3RI8和GRV021579-3RI5。GRV020025-3RI8具有占统治地位的尖晶石,在球粒的最外边存在严重蚀变的不规则边,钙钛矿主要分布在靠近边的位置。与GRV020025-3RI8比较,GRV021579-3RI5的尖晶石中的钙钛矿消失,深绿辉石出现,薄薄的蚀变层位于尖晶石核和富钙辉石边之间。两个富尖晶石球粒状CAI的尖晶石均具有低含量FeO和ZnO的特征,而且GRV021579-3RI5具有较GRV020025-3RI8更高的TiO2含量。岩石学和矿物化学特征表明,GRV020025-3RI8和GRV021579-3RI5都经历过熔融结晶过程,它们的蚀变均发生在非氧化的含水或无水的环境中。  相似文献   

3.
Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other  相似文献   

4.
本文研究了2个富钙长石-橄榄石型包体和2个富黄长石-尖晶石型和富尖晶石-辉石型包体(分别来自宁强和南极格罗夫山碳质球粒陨石)的矿物岩石学特征,并对它们进行了对比。富钙长石-橄榄石型包体的矿物模式组成具有富橄榄石和缺失黄长石的特征,其可能是球粒和典型难熔包体之间的中间产物,是认识它们之间相互关系的钥匙。矿物岩石学特征表明富黄长石-尖晶石型和富尖晶石-辉石型包体可能是星云直接凝聚的产物,而富钙长石-橄榄石型包体经历过熔融结晶过程。富钙长石-橄榄石型包体的初始物质可能是富Al的球粒或含难熔组分的蠕虫状橄榄石集合体。矿物化学组成对比研究发现,GRV 022459-RI6中的尖晶石具有最富FeO的特征,表明包体的蚀变可能发生在高氧逸度的星云环境。  相似文献   

5.
富钙长石-橄榄石包体与其他部分典型包体W-L边的成因   总被引:1,自引:1,他引:0  
球粒陨石中的富Ca、Al包体(简称CAI)形成于星云演化的最初始阶段,保存了大量星云形成和演化的各种信息。研究认为,包体的成因主要包括星云直接凝聚和熔融结晶,少部分甚至经历过高温蒸发过程。部分CAI最外层具有由一种或几种矿物组成的Warking-Lovering边(简称为W-L边),CAI和其W-L边对于认识早期星云环境和界定CAI的形成时间等均具有重要意义。目前,对于W-L边的形成过程研究并不深入,且一直存在争议。本文主要介绍了三个典型包体:C#1(富钙长石-橄榄石包体)、GRV 022459-2RI5(A型包体)和GRV 021579-3RI5(富尖晶石球粒状包体)及其W-L边的矿物岩石学和氧同位素组成特征。C#1包体明显经历过熔融结晶过程,W-L边氧同位素组成具有与包体内部矿物相似的富~(16)O同位素特征,表明W-L边的成因与包体的形成过程密切相关,形成于同一富~(16)O同位素组成区域,且W-L边属于包体熔融结晶过程后期的产物。矿物岩石学特征表明,GRV 022459-2RI5属于星云直接凝聚形成,其W-L边为包体形成过程最晚期星云凝聚产物。GRV021579-3RI5经历过熔融结晶过程,其W-L边为包体结晶最后阶段的产物。  相似文献   

6.
The condensation temperatures are calculated for a number of refractory trace metals from a gas of solar composition at 10?3 and 10?4 atm. total pressure. Instrumental neutron activation analysis of Ca-Al-rich inclusions in the Allende carbonaceous chondrite reveals enrichments of 22.8 ± 2.2 in the concentrations of Ir, Sc and the rare earths relative to Cl chondrites. Such enrichments cannot be due to magmatic differentiation processes because of the marked differences in chemical behavior between Ir and Sc, exhibited by their distributions in terrestrial igneous rocks and meteorites. All of these elements should have condensed from a cooling gas of solar composition above or within the range of condensation temperatures of the major mineral phases of the inclusions, which suggests that these inclusions are high-temperature condensates from the primitive solar nebula. Gas-dust fractionation of these materials may have been responsible for the depletion of refractory elements in the ordinary and enstatite chondrites relative to the carbonaceous chondrites.  相似文献   

7.
Bulk compositions of metallic Fe-Ni from two equilibrated ordinary chondrites, Jilin (H5) and Anlong (H5), and two unequilibrated ones, GRV 9919 (L3) and GRV 021603 (H3), were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The CI-, Co-normalized abundances of siderophile and chalcophile elements of metallic Fe-Ni from the unequilibrated ordinary chondrites correlate with 50% condensation temperatures (i.e., volatility) of the elements. The refractory siderophile elements (i.e., platinum group elements, Re), Au, Ni and Co show a flat pattern (1.01×CI Co-normalized), while moderate elements (As, Cu, Ag, Ga, Ge, Zn) decrease with volatility from 0.63×CI (Co-normalized, As) to 0.05×CI (Co-normalized, Zn). Cr and Mn show deficit relative to the trend, probably due to their main partition in silicates and sulfides (nonmagnetic). Metallic Fe-Ni from the equilibrated ordinary chondrites shows similar patterns, except for strong deficit of Cr, Mn, Ag and Zn. It is indicated that these elements were almost all partitioned into silicates and/or sulfides during thermal metamorphism. The similar deficit of Cr, Mn, Ag and Zn was also found in iron meteorites. Our analyses demonstrate similar behaviors of W and Mo as refractory siderophile elements during condensation of the solar nebula, except for slight depletion of Mo in the L3 and H5 chondrites. The Mo-depletion of metallic Fe-Ni from GRV 9919 (L3) relative to GRV 021603 (H3) could be due to a more oxidizing condition of the former than the latter in the solar nebula. In contrast, the Mo-depletion of the metallic Fe-Ni from the H5 chondrites may reflect partition of Mo from metal to silicates and/or sulfides during thermal metamorphism in the asteroidal body.  相似文献   

8.
富Ca,Al包体、球粒和蠕虫状橄榄石集合体都是早期星云事件的产物。本文探讨了4个富橄榄石的富Ca,Al组分集合体的矿物岩石学特征,并对它们进行了对比。矿物岩石学特征表明含橄榄石边的富尖晶石-辉石型包体和富Ca,Al组分蠕虫状橄榄石集合体都属于星云直接凝聚的产物,而富钙长石-橄榄石型包体(POI)和富Ca,Al组分球粒经历过熔融结晶过程。矿物模式组成表明POI包体和富Ca,Al组分球粒可能是认识典型富Ca,Al包体与球粒之间相互关系的钥匙。蠕虫状橄榄石集合体GRV022459-2C1中尖晶石普遍具有高的FeO含量,表明其蚀变发生于高氧逸度的星云环境。球粒与粗粒富Ca,Al包体可能属于同一热事件的产物,粗粒富Ca,Al包体形成于富Ca,Al矿物富集的区域,Mg,Fe质硅酸盐球粒形成于富Ca,Al矿物缺失的区域,POI包体和富Ca,Al组分球粒可能形成于上述两个区域之间的过渡区域。  相似文献   

9.
Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.  相似文献   

10.
Bulk chemical compositions of the various petrographie types of chondrules and inclusions in Type 3 carbonaceous chondrites (excluding those affected by metamorphism) have been determined by microprobe defocused beam analysis. Inclusion compositions follow approximately the theoretical compositional trajectory for equilibrium condensation. Analyses of chondrules occurring in the same meteorites have higher silica contents and show only slight overlap with inclusion compositions. Dust fusion is apparently an inadequate mechanism for producing the wide chemical variations observed among chondrules. Impact melting models require sampling of complex target rocks which are unknown as components of meteorites; this mechanism also demands efficient mechanical processing of chondrules before accretion. A genetic relationship between chondrules and inclusions in carbonaceous chondrites is suggested by the compositional continuum between these objects. A condensation sequence which dips into the liquid stability field at lower temperatures is advocated for the production of both inclusions and chondrules. Textural relationships between intergrown chondrules and inclusions support such a sequence. This model suggests that the assembled components (inclusions and chondrules) of carbonaceous chondrites are related by a common process.  相似文献   

11.
The mineralogy and bulk compositions of the matrices of the CR chondrites MET 00426 and QUE 99177 have been studied using a combination of SEM, EPMA, and TEM techniques. The matrices of these two chondrites are texturally, chemically, and mineralogically similar and are characterized by significant FeO-enrichments with respect to other CR chondrite matrices, nearly flat refractory lithophile patterns, variable volatile element patterns, and a simple mineral assemblage dominated by amorphous silicate material and Fe,Ni sulfides. Fine-grained, crystalline silicate phases such as olivine and pyroxene appear to be extremely rare in the matrices of both meteorites. Instead, the mineralogy of matrices and fine-grained rims of both meteorites consists of abundant amorphous FeO-rich silicate material, containing nanoparticles of Fe,Ni sulfides (troilite, pyrrhotite, and pentlandite). Secondary alteration minerals that are characteristic of other CR chondrites (e.g., Renazzo and Al Rais), such as phyllosilicates, magnetite, and calcite are also rare. The texture and mineralogy of the matrices of MET 00426 and QUE 99177 share many features with matrices in the primitive carbonaceous chondrites ALH A77307 (CO3.0) and Acfer 094 (unique). These observations show that MET 00426 and QUE 99177 are very low petrologic type 3 chondrites that have escaped the effects of aqueous alteration, unlike other CR chondrites, which are typically classified as petrologic type 2. We suggest that these meteorites represent additional samples of highly primitive, but extremely rare carbonaceous chondrites of petrologic type 3.00, according to the classification scheme of Grossman and Brearley (2005). The highly pristine nature of MET 00426 and QUE 99177 provides important additional insights into the origins of fine-grained materials in carbonaceous chondrites. Based on our new observations, we infer that the amorphous silicate material and nanosulfide particles that dominate the matrices of these meteorites formed in the solar nebula by rapid condensation of material following high-temperature events, such as those that formed chondrules.  相似文献   

12.
我国首批回收的四块南极陨石类型的确定   总被引:12,自引:0,他引:12  
陈晶  刘小汉等 《岩石学报》2001,17(2):314-320
中国第15次南极考察队于1999年元月在格罗夫山实施首次考察时回收了四块陨石,填补了我国南极陨石回收的空白。根据国际陨石协会命名委员会新回收陨石的命名原则,这些陨石已分别命名为GRV98001,GRV98002,GRV98003和GRV98004。根据初步岩石、矿物以及全岩化学分析,这四块陨石分别属于石质球粒陨石(GRV98001),L5型球粒陨石(GRV98002),H4型球粒陨石(GRV98004)和极细粒八面体缺陨石(GRV98003)。  相似文献   

13.
Although acapulcoites and lodranites played a key role in understanding partial differentiation of asteroids, the lack of samples of the chondritic precursor limits our understanding of the processes that formed these meteorites. Grove Mountains (GRV) 020043 is a type 4 chondrite, with abundant, well-delineated, pyroxene-rich chondrules with an average diameter of 690 μm, microcrystalline mesostasis, polysynthetically striated low-Ca pyroxene, and slightly heterogeneous plagioclase compositions. Similarities in mineralogy, mineral composition, and oxygen isotopic composition link GRV 020043 to the acapulcoite-lodranite clan. These features include a high low-Ca pyroxene to olivine ratio, high kamacite to taenite ratio, and relatively FeO-poor mafic silicates (Fa10.3, Fs10.4) relative to ordinary chondrites, as well as the presence of ubiquitous metal and sulfide inclusions in low-Ca pyroxene and ƒO2 typical of acapulcoites. GRV 020043 shows that evidence of partial melting is not an essential feature for classification within the acapulcoite-lodranite clan. GRV 020043 experienced modest thermal metamorphism similar to type 4 ordinary chondrites. GRV 020043 suggests a range of peak temperatures on the acapulcoite-lodranite parent body similar to that of ordinary chondrites, but shifted to higher temperatures, perhaps consistent with earlier accretion. The mineralogy and mineral compositions of GRV 020043, despite modest thermal metamorphism, suggests that most features of acapulcoites previously attributed to reduction were, instead, inherited from the precursor chondrite. Although partial melting was widespread on the acapulcoite-lodranite parent body, ubiquitous Fe,Ni-FeS blebs in the cores of silicates were not implanted by shock or trapped during silicate melting, but were inherited from the precursor chondrite with subsequent overgrowths during metamorphism.  相似文献   

14.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

15.
王道德  王桂琴 《矿物学报》2012,32(3):321-340
陨石是来自含气体-尘粒的太阳早期星云盘凝聚和吸积的原始物质,大多数原始物质因吸积后的作用过程而改变(如月球、地球及火星样品),但有一些却完整的保存下来(如球粒陨石或球粒陨石中的难熔包体)。这些原始的物质通常依据同位素丰度特征来识别,依据其矿物-岩石学特征和成因可将已知的陨石划分许多更小的类型。陨石学及天体化学的新近进展包括:新近识别的陨石群;发现新类型球粒陨石及行星际尘粒中发现前太阳和星云组分;利用短寿命放射性核素完善了早期太阳系年代学;洞察宇宙化学丰度、分馏作用及星云源区及通过次生母体的作用过程阐释星云和前星云的记录。本文概述了早期太阳系内从星云到陨石的演化过程。依据这些资料,对早期太阳系所经历的多种核合成的输入、瞬时加热事件与星云动力学有一些新的认识,以及认识到小星子和行星体系的演化比以前预期的更快速。  相似文献   

16.
我国南极陨石研究与展望   总被引:2,自引:0,他引:2  
继1998~2000年我国第15、16次南极科考队在南极格罗夫山发现32块陨石之后,2002~2003年第19次科考队成立了以回收陨石为中心任务的格罗夫山综合考察分队,在同一地区成功回收4448块陨石。我国的南极陨石回收工作不但实现了零的突破,而且成为继日本和美国之后拥有南极陨石数量最多的国家之一。通过对第15、16次队回收的32块陨石以及第19次队4448块陨石中的38块代表性样品的化学一岩石类型划分工作,除平衡型普通球粒陨石外,发现了2块火星陨石、2块橄辉无球粒陨石、6块非平衡L3型陨石、4块碳质球粒陨石和1块非平衡型顽辉石球粒陨石等特殊类型陨石。本文主要介绍了南极陨石的回收和研究进展,以及我国在南极格罗夫山回收陨石的情况和已取得的初步研究成果。同时对我国今后的陨石回收与研究工作提出初步设想。  相似文献   

17.
The concentration of Pd in 7 carbonaceous chondrites, 18 ordinary chondrites, 3 achondrites, 29 iron meteorites and other samples has been determined by stable isotope dilution using solid source mass spectrometry. The Cl chondrite Orgueil gives a ‘cosmic’ abundance for Pd of 1.5 (Si = 106 atoms), in good agreement with the currently accepted value.The concentration of Pd shows little variation among the carbonaceous chondrites, but in ordinary chondrites decreases from the H to L to LL groups. Pd in achondrites is approx 100 times lower than in chondrites. Data for iron meteorites plot around the ‘cosmic’ PdNi ratio; however the Pd data falls into distinct groups, corresponding to the chemical group classification. These results support the hypothesis that at least two fractionation processes have occurred during the formation of iron meteorites.  相似文献   

18.
We report on the abundances of Ru isotopes in (1) iron meteorites, (2) stony-iron meteorites (pallasites), (3) ordinary and carbonaceous chondrites, and (4) in refractory inclusions from the carbonaceous meteorite Allende. We have developed improved Multiple-Collector, Negative-ion Thermal Ionization Mass Spectrometric (MC-NTIMS) techniques for Ru, with high ionization efficiency of 4% and with chemical separation techniques for Ru, which reduce mass interferences to the ppm level, so that no mass interference corrections needed to be applied. Our data were normalized to 99Ru/101Ru to correct for mass-dependent fractionation. We find no Ru isotopic effects in the ordinary chondrites and group IAB iron meteorites we have measured. There are significant effects (deficits) in the pure s-process nuclide 100Ru, in the Allende whole-rock and in refractory inclusions of up to 1.7 parts in 10,000 (εu). There are also endemic deficits in 100Ru in iron meteorites and in pallasites of up to 1.1 εu. The Ru data suggest a wide spread and large scale heterogeneity in p-, s-, and r-process components resulting in a deficit in s-process nuclides or enhancements in both p- and r-process nuclides, in refractory siderophiles condensing in the early solar nebula. In contrast, the data on bulk Murchison suggest an excess in 100Ru and in 104Ru, which are distinct from the rest of the measured patterns. Our results establish the presence of significant isotopic heterogeneity for Ru in the early solar nebula. The observation of endemic Ru effects in planetary differentiates, such as iron meteorites and pallasites, must reflect the siderophile nature of Ru and the preservation in condensing FeNi metal of refractory metal condensate grains formed in the early solar nebula. Once incorporated in the metal phase, the refractory siderophiles remained in the metal phase through the melting and differentiation of planetesimals to form FeNi cores and silicate mantles and crusts.  相似文献   

19.
侯渭  欧阳自远 《岩石学报》1996,12(1):115-126
建立类地行星区太阳星云凝聚过程的岩石学模型,对于合理解释陨石、地球和类地行星的成因关系,探讨地球起源和估算地球的整体成分都有着重要意义。本文中根据天体化学和太阳系演化学说关于太阳星云物理化学条件的基本分析,以及实验凝聚岩石学的研究结果,推断在太阳星云盘的类地行星区中可能有星云的气-固和气-液-固两种凝聚作用发生。通过对球粒陨石中球粒和基质矿物成分及结构构造特征的对比,论证了绝大多数球粒的气-液-固凝聚成因和基质的气-固凝聚成因,并讨论了球粒陨石各化学群的凝聚成因模式。  相似文献   

20.
This paper shows that ferrous silicate meteorites (chondrites), which are conventionally regarded as direct condensates of the primordial solar nebula, are actually igneous and evolved in two stages that were contrasting in their physical and chemical parameters. The origin and early evolution of chondrites went on under enormous fluid pressure, which produced diamond embryos oversaturated with fluid inclusions, and gave rise to isotope abnormality and chondrite structure due to tear-shaped segregation of silicate melt in a Fe-rich diamond-bearing matrix melt. Chondrite crystallization mostly occurred during the second stage, which occurred under low pressure and was characterized by normal fractionation of isotopes and formation of structure opposite to chondrite (containing metal droplets in a silicate matrix), and which involved the formation of volcanic glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号