首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

2.
The Ni-S System and Related Minerals   总被引:1,自引:0,他引:1  
The system Ni-S has been studied systematically from 200? to1, 030? C by means of evacuated, sealed silica-glass tube experimentsand differential thermal analyses. Compounds in the system areNi3S2 (and a high temperature, non-quenchable Ni3?S2 phase),Ni7S6, Ni1–S4 Ni3S4, and NiS2. The geologic occurrenceof the minerals heazlewoodite (Ni2S2), millerite (ßSNi1-2S),polydymite (Ni3S4), and vaesite (NiS2) can now be describedin terms of the stability ranges of their synthetic equivalents. Hexagonal heazlewoodite, which is stoichiometric within thelimit of error of the experiments, inverts on heating to a tetragonalor pseudotetragonal phase at 556? C. This high-temperature phase(Ni3 has a wide field of stability, from 23.5 to 30.5 wt percent sulfur at 600? C, and melts incongruently at 806??3? C.The ßNi7S6 phase inverts to Ni78 at 397? C6 when inequilibrium with Ni3S2, and at 400? C when in equilibrium withNiS. Crystals of Ni7S6 break down to Ni3-S2+NiS at 573??3?C.The low-temperature form of Ni1-S1 corresponding to the mineralmillerite, is rhombohedral, and the high-temperature form hasthe hexagonal NiAs structure. Stoichiometric NiS inverts at379??3?C, whereas Ni1-S with the maximum nickel deficiency invertsat 282??5OC. The Ni1-alphS-NiS2 solvus was determined to 985??3?C,the eutectic temperature of these phases. Stoichiometric NiSis stable at 600?C but breaks down to Ni2-S2 and Ni1-S below797?C, whereas Ni1-S with 38.2 wt per cent sulfur melts congruentlyat 992??3?C. Vaesite does not vary measurably from stoichiometricNiS2 composition, and melts congruently at 1.007?5?C. Polydymitebreaks down to aNi-S? vaesite at 356??3?C. Differential thermalanalyses showed the existence of a two-liquid field in the sulfur-richportion of the system above 991?C and over a wide compositionalrange.  相似文献   

3.
This study reports oxygen isotope ratios determined by laserfluorination of mineral separates (mainly plagioclase) frombasaltic andesitic to rhyolitic composition volcanic rocks eruptedfrom the Lassen Volcanic Center (LVC), northern California.Plagioclase separates from nearly all rocks have 18O values(6·1–8·4) higher than expected for productionof the magmas by partial melting of little evolved basalticlavas erupted in the arc front and back-arc regions of the southernmostCascades during the late Cenozoic. Most LVC magmas must thereforecontain high 18O crustal material. In this regard, the 18O valuesof the volcanic rocks show strong spatial patterns, particularlyfor young rhyodacitic rocks that best represent unmodified partialmelts of the continental crust. Rhyodacitic magmas erupted fromvents located within 3·5 km of the inferred center ofthe LVC have consistently lower 18O values (average 6·3± 0·1) at given SiO2 contents relative to rockserupted from distal vents (>7·0 km; average 7·1± 0.1). Further, magmas erupted from vents situated attransitional distances have intermediate values and span a largerrange (average 6·8 ± 0·2). Basaltic andesiticto andesitic composition rocks show similar spatial variations,although as a group the 18O values of these rocks are more variableand extend to higher values than the rhyodacitic rocks. Thesefeatures are interpreted to reflect assimilation of heterogeneouslower continental crust by mafic magmas, followed by mixingor mingling with silicic magmas formed by partial melting ofinitially high 18O continental crust (9·0) increasinglyhybridized by lower 18O (6·0) mantle-derived basalticmagmas toward the center of the system. Mixing calculationsusing estimated endmember source 18O values imply that LVC magmascontain on a molar oxygen basis approximately 42 to 4% isotopicallyheavy continental crust, with proportions declining in a broadlyregular fashion toward the center of the LVC. Conversely, the18O values of the rhyodacitic rocks suggest that the continentalcrust in the melt generation zones beneath the LVC has beensubstantially modified by intrusion of mantle-derived basalticmagmas, with the degree of hybridization ranging on a molaroxygen basis from approximately 60% at distances up to 12 kmfrom the center of the system to 97% directly beneath the focusregion. These results demonstrate on a relatively small scalethe strong influence that intrusion of mantle-derived maficmagmas can have on modifying the composition of pre-existingcontinental crust in regions of melt production. Given thisresult, similar, but larger-scale, regional trends in magmacompositions may reflect an analogous but more extensive processwherein the continental crust becomes progressively hybridizedbeneath frontal arc localities as a result of protracted intrusionof subduction-related basaltic magmas. KEY WORDS: oxygen isotopes; phenocrysts; continental arc magmatism; Cascades; Lassen  相似文献   

4.
The voluminous, bimodal, Silurian Topsails igneous suite consistsmainly of ‘A-type’ peralkaline to slightly peraluminous,hypersohnis to subsolvus granites with subordinate syenite,onzonite and diabase, plus consanguineous basalts and highsilicarhyolites. Nd(T) values from the suite range from –1.5to +5.4; most granitoid components exhibit positive Nd(T) values(+1.1 to +3.9). Granitoid initial 87Sr/86Sr and most 18 O valuesare in the range expected for rocks derived from mantle-likeprotoliths (0.701–0.706 and +6 to +80/). Restricted 207Pb/204Pbvariation is accompanied by significant dispersion of 206Pb/204Pband 208Pb/204Pb. Superficially, petrogenesis by either direct(via fractionation from basalt) or indirect (via melting ofjuvenile crust) derivation from mantle sources appears plausible.Remelting of the granulitic protolith of Ordovician are-typegranitoids can be ruled out, because these rocks exhibit negativeNd(T) and a large range in 207Pb/204Pb. Geochemical and isotopicrelationships are most compatible with remelting of hybridizedlithospheric mantle generated during arc-continent collision.A genetic link is suggested among collision-related delaminationor slab break-off events and emplacement of ‘post-erogenic’granite suites. A-type granites may recycle previously subductedcontinental material, and help explain the mass balance notedfor modern arcs. However, they need not represent net, new,crustal growth. KEY WORDS: A-type granites; juvenile crust; isotopes; Newfoundland *Telephone: (613) 995-4972. Fax: (613) 995-7997. e-mail: jwhalen{at}gsc.emr.ca  相似文献   

5.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

6.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

7.
Re—Os and Sm—Nd isotopic data have been obtainedfor mafic and ultramafic cumulates from the 2700-Ma StillwaterComplex and associated fine-grained sills and dykes, so as tobetter constrain the geochemical characteristics of Stillwaterparental magmas and to trace the source(s) of the precious metalsthat have been concentrated in the J-M Reef, the major platinum-groupelement mineral deposit in the complex. Initial Os isotopiccompositions (187Os/188Os) for chromitites from the Ultramaficseries range from a radiogenic isotopic composition of 0.1321(Os = +21) for the platinum group element (PGE)-enriched B chromititeseam from the West Fork area to a near-chondritic isotopic compositionof 0.1069–0.1135 (Os=–2 to +4.1) for the PGE-poorG and H chromitite seams, respectively, near the middle of theUltramafic series. Osmium isotopic data for the PGE-rich B chromititeseam are generally isochronous with whole-rock and mineral datafor the J-M Reef (Os = + 12 to + 34). Re—Os isotopic datatherefore document a contrast between PGE-poor cumulates fromthe Ultramafic series and PGE-enriched cumulates from both theUltramafic series and the J-M Reef, suggesting that Os and probablythe other PGE were derived from at least two isotopically distinctsources. Moreover, these Re-Os isotopic characteristics correlatewith petrogenetic subdivisions of the Stillwater Complex basedon field mapping, petrology, REE geochemistry, and Sm—Ndisotope geochemistry. The data are best explained by mixingof two magma types, referred to as U-type and A-type magmas,with differing major element, trace element, and precious metalabundances and isotopic compositions. Although crustally contaminatedkomatiites can mimic the Os and Nd isotopic characteristicsof the U-type magma, the combination of low initial Os isotopicvalues (Os0) with low initial Nd isotopic values (Nd–1),high 207Pb/204Pb for a given 206Pb/204Pb (Wooden et al., 1991),and high (Ce/Yb)n ratios in U-type cumulates and fine-grainedsills and dykes is more consistent with the involvement of aRe-poor, but trace-element-enriched portion of the subcontinentallithospheric mantle in the petrogenesis of Stillwater U-typemagmas. However, the radiogenic initial Os isotopic compositionsof the J-M Reef and other portions of the intrusion with elevatedPGE concentrations suggest that A-type parental magmas incorporatedOs from radiogenic early Archaean crust. The relatively largerange in (Ce/Yb)n, Os, and Nd values suggests that mixing ofgeochemically distinct magmas may have been an important processthroughout the history of the Stillwater magma chamber. Magmamixing may then explain not only the PGE-enriched J-M Reef butalso the anomalous enrichment of the PGE in the B chromititeseam from the West Fork area and the variable values observedin other chromitite seams of the Ultramafic series. The intimateassociation of these magma types, derived from or modified inthe Archaean continental lithosphere, may then be crucial tothe formation of magmatic PGE mineral deposits.  相似文献   

8.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

9.
A Stable Isotope Study of Anorogenic Magmatism in East Central Asia   总被引:8,自引:0,他引:8  
A stable isotope study of 168 plutonic igneous rock and fivewater samples from Transbaikalia, East Asia, has been made,including 318 whole-rock and mineral 18O/16O analyses and 14D/H analyses. This represents the first detailed isotopic studyof the enormous Phanerozoic K-rich (mostly anorogenic) granitoidbelts of this region, which are thousands of kilometers in lengthand span an age range of >250Ma. Of the five main intrusivesuites, emplacement of the youngest (Permo-Triassic) was accompaniedby intense meteoric-hydrothermal activity, locally causing extreme18O depletio (18O feldspar<–12). This reflects thevery low 18O of the water involved in these systems, which probablyhad 18O < – 20 and D < – 150, consistent withthe high paleolatitude of Transbaikalia in the early Mesozoic(80N). Despite local post-emplacement, hydrothermal 18O-depletioneffects near Permo-Triassic and younger plutons, the variationof magmatic isotopic composition in the five intrusive suites,in space and time, can be clearly discerned using the 18O/16Ovariation in phases such as quartz and sphene that are resistantto sub-solidus exchange. A procedure for analyzing 18O/16O insphene using a laser fluorination technique is described: analysisof samples as small as 0.4 mg (including single crystals ofsphene from granitoids) is possible and provides an effectiveway to estimate the magmatic 18O value of plutonic igneous rocks.Most sphene and quartz 18O values vary by 1.0–2.0% withineach of the five main intrusive suites in Transbaikalia (rangingin age from mid-Paleozoic to Mesozoic), and are uniform bothwithin individual plutons and among plutons of the same suiteseparated by tens or hundreds of kilometers. However, each suitehas a unique range in 18O/16O, indicating that, on a regionalscale, the magmatic 18O values of these granitoids decreasedprogressively in 1% decrements from +10 in the earliest groupto +6 in the youngest. This progression was accompanied by increasesin the concentration of elements such as K and Zr, and decreasesin the concentration of elements such as Sr and Ba. These systematicsrequire large scale deep crustal melting and mixing processesto generate the compositional uniformity of individual plutonsand groups over such wide areas, and also a progressive hybridizationof the crust with alkalic, mantle-derived magmas to generatesyenites and granites with progressively lower 18O values. Thisprocess may be a hallmark of anorogenic granitoid petrogenesisand the intracontinental cratonization process in general, andalso represents an important (though largely cryptic) crustalgrowth mechanism. KEY WORDS: anorogenic granitoids; crustal growth; hybridization; hydrothermal systems; stable isotopes 1Present address: Galson Sciences Limited, 5 Grosvenor House, Melton Road, Oakham LE15 6AX, UK.  相似文献   

10.
Mount Galunggung is a historically active volcano in southwesternJava that has erupted four times in the last two centuries.During the most recent event, which occurred during a 9–monthinterval in 1982– 83, some 305 106 m3 of medium–K,calc–alkaline magma was erupted. This eruption was unusualbecause of its duration, the diversity of eruption dynamicsand products, and the range of lava compositions produced. Thecomposition of juvenile material changed gradually during thecourse of the eruption from initial plagioclase (An60–75)and two–pyrozene bearing andesites with 58% SiO2 to finalplagioclase (An85–90), diopside, and olivine (Fo85–90)bearing primitive magnesium basalts with 47% SiO2 Mineralogicaland compositional relationships indicate a magmatic evolutioninvolving differentitation of high–Mg parental melt. Theeruptive volumes of 35 106 m3 andesite, 120 106 m3 maficandesite, and 150 106 m3 basalt are consistent with the ideathat the 1982– 83 eruption progressively tapped and draineda magma chamber that had become chemically stratified throughextensive crystal fractionation. Separates of plagioclase and pyroxene have 18O( SMO W) rangesof + 5. 6 to + 6.0 and + 5.3 to + 5.6, respectively, with 18Oplag–pxvalues of + 0.4 to + 0.6o, indicating internal O–isotopeequiliburium at temperature of 1100–850 C. The magenesianbasalts have magmatic 18O/ 16O ratios similar to those of mid–oceanridge basalt, and the O–isotope ratios of compositionallyevolved derivative melts show no evidence for contaminationof the galunggung magmas by 18O–rich crust during differentiation.Andesites and transitional mafic and sites have a more variableO–isotope character, with laves and phenocrysts havingboth higher and lower 18O values than observed in the parentalmagnesium basalts. These features are interpreted to reflectintramagma chamber processes affecting the upper portions ofthe differentiating Galunggung magma body before the 1982–83eruption.  相似文献   

11.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

12.
An oxygen and hydrogen isotopic study of minerals and wholerocks from the granites of the Mourne Mountains Tertiary complex,and related rocks, shows that whereas a significant circulationof meteoric water was associated with the complex, it had onlyminor and localized effects on the granites themselves. TheSilurian slate and greywacke country rocks, which would havehad 18O(SMOW) values of +10 to +20 before the Tertiary igneousevents, have been depicted 18O to values of –40 to –05Tertiary acid minor intrusions outside the main granite massesare also 18O depleted. l8O whole-rock data on the granites showa range of +6.0 to +9.5, and include values significantly higherthan most of those obtained for the granites of the Tertiarycentral complexes of Skye, Mull, and Ardnamurchan. Many of thelowest whole-rock 18O values are found in samples where theminerals are not in isotopic equilibrium. The mineral oxygenisotopic data can be explained in terms of localized interactionwith meteoric water, resulting in preferential 18O depletionin feldspar(s) and biotite, with quartz being much less affected.The granites all show low values of D(SMOW) for biotite andamphibole separates (–137 to –104). The lowest valuesoccur close to the margins of the plutons, near internal contactsor near greisen localities, and these probably reflect limitedinteraction with meteoric water. The higher D values are fromsamples which show evidence of chloritization. This processappears to have occurred both during interaction with meteoricwater, and also during autometasomatism by an exsolved magmaticfluid in other parts of the plutons, including central locationswhere there is little or no evidence for the penetration ofmeteoric water. Granite samples which exhibit near-equilibriumoxygen isotope fractionations for constituent minerals are characterizedby magmatic O-isotopic compositions. The G2 granite, the largestpluton of the eastern centre, has a magmatic 18O(SMOW) valueof {small tilde}+95; intrusions G3 (eastern centre) and G4(western centre) both have 18O(SMOW) values of {small tilde}+90.The other two main intrusive phases have distinctly lower 18O(SMOW)values: {small tilde}+75 for Gl (the least fractionated graniteof the Mourne Mountains central complex), and from +75 to +85for G5. The oxygen isotopic data rule out simple partial meltingof the country rocks as the origin of the granites and alsopreclude an origin by closed-system fractional crystallizationof basaltic magma typical of that represented by Tertiary basicigneous rocks of the region. * Present address: NERC Isotope Geosciences Laboratory, Keyworth, Nottingham BG12 5GG, UK Present address: School of Engineering Technology, Georgian College, Barrie, Ontario, L4M 3X9, Canada  相似文献   

13.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   

14.
A new method has been suggested for evaluating the overall basicityof minerals and rocks by using ionization reactions involvingone proton: (sum of cations) + H2O = mineral + H+, (sum of cations) + H2O = (sum of normative minerals of a rock)+ H+. The basicity indicators are expressed as standard free energychanges of these reactions (). At standard water pressure (logPH2O = 0) and chemical activity of the metal ions ( log Mn+= 0), the relationship between and alkalinity of solutions(pH) becomes: = –2.303 RTlog H+ = 2.303 RT pH. The overall basicities of rock-forming oxides, minerals andmajor rocks were calculated from the thermodynamic data on ionsin water solutions and solid compounds.  相似文献   

15.
Archean shoshonitic lamprophyre dikes are prevalent along majortranslithospheric structures that demark tectonostratigraphicterranes in the Abitibi greenstone belt of the Superior Province.The lamprophyres post-date volcanism, tonalitic batholiths,deformation, and metamorphism of the terranes, and are mostprominently developed in trans-tensional graben, where theyare associated with molasse sediments and an alkaline suiteof plutons, stocks, and trachytes. Mineralogically, the dikesare characterized by zoned phiogopite or hornblende phenocrystsand/or diopsidic pyroxene, restriction of feldspar to the groundmass,globular segregations of K-feldspar and calcite, olivine ‘pilite’,and accessory Ti-magnetite, Cr-spinel, apatite, titanite, andSr-rich calcite; crustal xenoliths are sporadically present. Compositionally, weakly altered primititive dikes have contentsof SiO2 (41–48 wt.%), TiO2 (06–11 wt.%), P2O5(041–076 wt.%), Cr (258–915 ppm), Co (36–84ppm), Ni (159–368 ppm), and Sc (15–32 ppm), mg-numbers(72–79), and K2O/Na2O ratios (10–43) similar tothose of Phanerozoic shoshonitic lamprophyres. The primitivedikes are also characterized by extreme enrichments of K, Rb,Ba, Cs, U, and Th, enhanced light rare earth elements (REE),and fractionated REE patterns [Lan=33–274; (La/Yb)n=16–87].On mid-ocean ridge basalt (MORB) normalized plots the dikesshow coherent patterns, with (1)enrichment of K, Rb, and Barelative to Sr and LREE, (2) variable enrichments of Rb andBa relative to K, (3) troughs at Ta–Nb and Ti, and (4)variable negative P and positive Sm anomalies. Compositionalvariations of lamprophyre suites within restricted areas areinterpreted to reflect melting of compositionally heterogeneoussources, variable degrees of assimilation–fractional crystallization,and mixing of distinct batches of lamprophyric magmas. Primary18O values of the magmas are close to 63 as given by resistantpyroxene; these are 18O-relative to MORB, but comparable withPhanerozoic alkali basalts and lamprophyres. Mica, clinopyroxene,hornblende, and feldspar do not retain magmatic equilibriumfractionations for oxygen isotopes. A concordant U–Pbage of 26742 Ma was obtained from titanite, similar to theages of shoshonitic plutons in the same area. The lamprophyredikes possess a total range of Nd between 041 and 211(1),and define a distinct field in common with other late Archeanshoshonites on an f(Sm/Nd) vs. Nd plot. Pyroxenes yield a low87Sr/86Sr(0701102), whereas whole-rock Rb-Sr isotope systematicsare disturbed. Lamprophyres are not known from pre-27-Ga terranes. Their compositionand inferred geodynamic setting is consistent with an originin a depleted mantle wedge, enriched in large ion lithophileelements (LILE) and LREE during subduction by slab and sediment(low Sr/Nd) dehydration. Partial melting may have been triggeredby rebound and decompression that followed accretional collisionof two allochthonous greenstone terranes at a plate margin.The onset of shoshonitic magmatism at 27 Ga coincides withthe transition from tonalite–trondhjemite–granodiorite(TTG) dominated magmatism with high (La/Yb)n and low Yb (slabmelting) to mantle-wedge derived granites featuring lower (La/Yb)nand higher Yb (slab dehydration), owing to decreasing heat flow.Accretion of greenstone belts, and their buoyant harzburgiticroots, consolidated a thick subcontinental mantle lithosphereby 27 Ga, which was subsequently the source of Jurassic kimberlitesthat intruded the persistently reactivated Archean translithosphericstructures.  相似文献   

16.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

17.
Corella marbles in the Mary Kathleen Fold Belt were infiltratedby fluids during low-pressure (200-MPa) contact metamorphismassociated with the intrusion of the Burstall granite at 1730–1740Ma. Fluids emanating from the granite [whole-rock (WR) 18O=8.1–8.6%]produced Fe-rich massive and banded garnet—clinopyroxeneskarns [18O(WR)=9.1–11.9%]. Outside the skarn zones, marblemineralogies define an increase in temperature (500 to >575C) and XCO2 (0.05 to >0.12) towards the granite, andmost marbles contain isobarically univariant or invariant assemblagesin the end-member CaO–MgO–Al2O3–SiO2–H2O–CO2system. Marbles have calcite (Cc) 18O and 13C values of 12.3–24.6%and –1.0 to –3.9%, respectively. A lack of down-temperaturemineral reactions in the marbles suggests that pervasive fluidinfiltration did not continue after the thermal peak of contactmetamorphism. The timing of fluid flow probably correspondsto a period of high fluid production and high intrinsic permeabilitiesduring prograde contact metamorphism. The petrology and stableisotope geochemistry of the marbles suggest that these rockswere infiltrated by water-rich fluids. If fluid flow occurredup to the peak of contact metamorphism, the mineralogical andisotopic resetting is best explained by fluids flowing up-temperaturetoward the Burstall granite. However, if fluid flow ceased beforthe peak of regional metamorphism, the fluid flow directioncannot be unambiguously determined. At individual outcrops,marble 18O(Cc) values vary by several permil over a few squaremetres, suggesting that fluid fluxes varied by at least an orderof magnitude on the metre to tens-of-metre scale. Fluids werefocused across lithological layering; however, mesoscopic fracturesare not recognized. The focusing of fluids was possibly viamicrofractures, and the variation in the degree of resettingmay reflect variations in microcrack density and fracture permeability.The marble—skarn contacts represent a sharp discontinuityin both major element geochemistry and 18O values, suggestingthat, at least locally, little fluid flow occurred across thesecontacts.  相似文献   

18.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   

19.
The petrogenesis of pyroxenite layers within the Beni Bouseraperidotite massif is investigated by means of elemental andNd-Sr-Pb-O-S isotope analyses. The light rare earth element(LREE) depleted nature of many of the pyroxenites, their widevariation in composition, and lack of correlation between incompatibleelements and fractionation indices preclude them from representingcrystallized melts from a peridotitic source. The physical characteristicsof the pyroxenites and their large (greater than a factor of20) range in Ni rule out partial melting as the cause of theirpetrological and geochemical diversity. Major and compatibletrace element geochemistry is consistent with formation of mostof the pyroxenite suite via high-pressure crystal segregationin magma conduits intruding the peridotites. These magmas crystallizedclinopyroxene, orthopyroxene, and garnet. The pressure of crystallizationis constrained to be above {small tilde}45 kbar from the presenceof graphitized diamonds in pyroxenite layers. Lack of correlationbetween fractionation indices and highly incompatible elementsand the wide variation in incompatible element abundances suggestthat the suite did not form from genetically related magmas.The presence of positive and negative Eu anomalies (Eu/Eu* =0•54–2•0) in pyroxenites which crystallizedat pressures much greater than the plagioclase stability field({small tilde} 45 kbar) suggests that the parental magmas originatedfrom precursors which formed in the crust. Oxygen isotope compositionsof coexisting minerals in the pyroxenites indicate high-temperatureequilibration but 18O values vary from +4•9 to + 9•3,ruling out their derivation from the host peridotites or othernormal mantle sources. The extreme O-isotope variation, togetherwith 34S values of up to + 13 in sulphides included within CPXstrongly suggests that the melts from which the pyroxenitescrystallized were derived from hydrothermally altered, subductedoceanic lithosphere. Extreme initial radiogenic isotope variationin the pyroxenites (Nd + 26 to –9 , 87Sr/86Sr 0•7025–0•7110,206Pb/204Pb 18•21–19•90) support such an originbut also require a component with ancient, high U/Pb and Th/Pbin their source to explain the high 7/4 and 8/4 values of somepyroxenites. This component may be subducted hemi-pelagic sediment.Further evidence for a sediment component in the pyroxenitesis provided by isotopically light carbon in the graphite pyroxenites(13C–16 to – 28). Parentdaughter isotopes in thepyroxenites are strongly decoupled, making estimation of formationages speculative. The decoupling occurred recently (<200Ma), probably as a result of partial melting associated withdiapiric upwelling and emplacement of the massif into the crustfrom the diamond stability field. This late partial meltingevent further depleted the pyroxenites in incompatible elements.The variably altered nature of the subducted protolith and complexhistory of trace element fractionation of the pyroxenites haslargely obscured geochemical mixing trends. However, Nd–Pbisotope systematics indicate that incorporation of the componentwith high U/Pb–Th/Pb occurred relatively recently (<200Ma) for some pyroxenites. Other pyroxenites do not show evidencefor incorporation of such a component and may be substantiallyolder. Tectonic, geophysical, and isotopic constraints indicateformation of the pyroxenites in the mantle wedge above a subductingslab during the Cretaceous. Physical and chemical evidence forhigh-pressure fractionation seen in most of the pyroxenitesprecludes them from simply representing ancient subducted oceaniclithosphere, thinned by diffusion. However, the petrologicaland isotopic diversity of the massif support the concept ofa ‘marble cake’ mantle capable of producing theobserved geochemical diversity seen in oceanic magmas. *Present Address: Department of Terrestrial Magnetism, 5241 Broad Branch Road, N.W., Washington, DC 20015 Present address: Department of Geological Sciences, 1066 C.C. Little Building, University of Michigan, Ann Arbor, Michigan 48109  相似文献   

20.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号