首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As technical advances have dramatically increased our ability to analyze trace elements, the need for more reliable data on the compositional dependence of trace element partitioning between minerals and melt has become increasingly important. The late-Cretaceous Carmacks Group of south central Yukon comprises a succession of primitive high-Mg ankaramitic lavas characterized by shoshonitic chemical affinities and containing large complexly zoned clinopyroxene phenocrysts. The compositional zonation of the clinopyroxene phenocrysts is characterized by relatively Fe-rich (Mg# = Mg/(Mg + Fe) = 0.85), but mottled, cores surrounded by mantles of cyclically-zoned clinopyroxene whose Mg# varies repeatedly between 0.9 and 0.80. These cyclically zoned clinopyroxene mantles appear to record the repeated influx and mixing of batches of primitive with more evolved magma in a deep sub-crustal (∼1.2 GPa) magma chamber(s). Laser ablation ICP-MS was used to analyze the trace element variation in these zoned clinopyroxenes. The results indicate more than a threefold variation in the absolute concentrations of Th, Zr, rare earth elements (REE), and Y within individual clinopyroxene phenocrysts, with no apparent change in the degree of REE or high field strength element (HFSE) fractionation. The variation in absolute abundances of trace elements correlates closely with the major element composition of the clinopyroxene, with the most enriched clinopyroxene having the lowest Mg# and highest Al contents. The problem is that the amount of crystal fractionation required to explain the major element variation (∼20%) in these clinopyroxene phenocrysts cannot explain the increase in the abundance of the incompatible trace elements, which would require more than 70% crystal fractionation, if constant partition coefficients are assumed. The anomalous increase in incompatible trace elements appears to reflect an increase in their partition coefficients with increasing AlIV in the clinopyroxene; with an increase in Al2O3 from 1.5 to 4.0 wt.% during ∼20% crystal fractionation over a temperature decrease of ∼100°C being associated with more that a threefold increase in the partition coefficients of Th, Zr, REE, and Y. The magnitude of these increases may indicate that the substitution of these trace elements into clinopyroxene is better modeled in some natural systems by a local charge balance model, rather than the distributed charge model that better replicates the results of annealed experiments. These findings indicate that the effect of Al on the partition coefficients of incompatible trace elements in clinopyroxene may be under appreciated in natural magmatic systems and that the application of experimentally determined clinopyroxene partition coefficients to natural systems must be done with caution.  相似文献   

2.
The effect of silicate liquid structure upon mineral-liquid partitioning has been investigated by determining element partitioning data for coexisting immiscible granitic and ferrobasaltic magmas. The resulting elemental distribution patterns may be interpreted in terms of the relative states of polymerization of the coexisting magmas. Highly charged cations (REE, Ti, Fe, Mn, etc.) are enriched in the ferrobasaltic melt. The ferrobasaltic melt is relatively depolymerized due to its low SiO ratio. This allows highly charged cations to obtain stable coordination polyhedra of oxygen within the ferrobasaltic melt. The granitic melt is a highly polymerized network structure in which Al can occupy tetrahedral sites in copolymerization with Si. The substitution of Al+3 for Si+4 produces a local charge imbalance in the granitic melt which is satisfied by a coupled substitution of alkalis, thus explaining the enrichment of low charge density cations, the alkalis, in the granitic melt. P2O5 increases the width of the solvus and, therefore, the values of the distribution coefficients of the trace elements. This effect is attributed to complexing of metal cations with PO4?3 groups in the ferrobasaltic melt.The values of ferrobasalt-granite liquid distribution coefficients are reflected in distribution coefficients for a mineral and melts of different compositions. The mineral-liquid distribution coefficient for a highly charged cation is greater for a mineral coexisting with a highly polymerized melt (granite) than it is for that same mineral and a depolymerized melt (ferrobasalt). The opposite is true for low charge density cations. Mineralliquid and liquid-liquid distribution coefficients determined for the REE's indicate that fractionated REE patterns are due to mineral selectivity and not the state of polymerization of the melt.  相似文献   

3.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

4.
Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48–59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2–16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6–32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.  相似文献   

5.
X-ray single crystal diffraction data of natural and heated Al-rich orthopyroxenes were used to study the cation ordering and the geometrical changes induced by Si+R 2+=AlIV+R 3+ substitution. The calculated site populations and the observed bond distances in tetrahedral and octahedral sites suggest a total ordering of AlIV in the TB tetrahedron and of R 3+ cations in the M1 octahedron, even in samples heated at 1000° C. The mismatch between the tetrahedral and octahedral layers along the c axis seems to play a crucial role in determining the limits of Si/AlIV substitution.  相似文献   

6.
A crystal chemical investigation of clinopyroxenes from a suite of nepheline-bearing lavas located in the Nyambeni Range of Kenya has delineated the polyhedral site configurations and related intracrystalline relationships. These are distinct from those determined for the clinopyroxene in an analogous suite of leucite-bearing lavas from the Sabatini volcanoes in the Roman Region of Italy (Dal Negro et al. 1985).The Nyambeni clinopyroxene, varying from salite to hedenbergite, preferentially accepts Na in the M2 site to balance increasing Fe2+ and Si, respectively, whereas the Sabatini clinopyroxene is confined within the salite field and preferentially accepts Aliv to balance the effect of increasing (Fe3++Ti4++Alvi+Cr3+)M1.The Fe2+/Fe3+ and K/Na ratios of the host rocks emerge as significant factors in determining the different polyhedral configurations and evolutions of the clinopyroxene from the two lava suites, respectively. The resulting Mg-Fe2+ order-disorder relationships in M1–M2 are also distinct in the two clinopyroxenes. A high degree of MgFe2+ order in M1–M2 corresponds to the largest configurational, hence energetic, difference between M1 and M2 in the Nyambeni clinopyroxene, whereas the converse applies to the Sabatini clinopyroxene.In view of the significant crystal chemical differences and distinct evolution trends, it is proposed that salites from alkali volcanic rocks may be referred to as Nyambeni-type or Sabatini-type, respectively.  相似文献   

7.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   

8.
Major and trace element mineral/melt partition coefficients are presented for phases on the liquidus of fertile peridotite at 23-23.5 GPa and 2300 °C. Partitioning models, based on lattice-strain theory, are developed for cations in the ‘8-fold’ sites of majorite and Mg-perovskite. Composition-dependant partitioning models are made for cations in the 12-fold site of Ca-perovskite based on previously published data. Dmin/melt is extremely variable for many elements in Ca-perovskite and highly correlated with certain melt compositional parameters (e.g. CaO and Al2O3 contents). The 8-fold sites in Mg-perovskite and majorite generally have ideal site radii between 0.8 and 0.9 Å for trivalent cations, such that among rare-earth-elements (REE) Dmin/melt is maximum for Lu. Lighter REE become increasingly incompatible with increasing ionic radii. The 12-fold site in Ca-perovskite is larger and has an ideal trivalent site radius of ∼1.05 Å, such that the middle REE has the maximum Dmin/melt. Trivalent cations are generally compatible to highly compatible in Ca-perovskite giving it considerable leverage in crystallization models. Geochemical models based on these phase relations and partitioning results are used to test for evidence in mantle peridotite of preserved signals of crystal differentiation in a deep, Hadean magma ocean.Model compositions for bulk silicate Earth and convecting mantle are constructed and evaluated. The model compositions for primitive convecting mantle yield superchondritic Mg/Si and Ca/Al ratios, although many refractory lithophile element ratios are near chondritic. Major element mass balance calculations effectively preclude a CI-chondritic bulk silicate Earth composition, and the super-chondritic Mg/Si ratio of the mantle is apparently a primary feature. Mass balance calculations indicate that 10-15% crystal fractionation of an assemblage dominated by Mg-perovskite, but with minor amounts of Ca-perovskite and ferropericlase, from a magma ocean with model peridotite-based bulk silicate Earth composition produces a residual magma that resembles closely the convecting mantle.Partition coefficient based crystal fractionation models are developed that track changes in refractory lithophile major and trace element ratios in the residual magma (e.g. convecting mantle). Monomineralic crystallization of majorite or Mg-perovskite is limited to less than 5% before certain ratios fractionate beyond convecting mantle values. Only trace amounts of Ca-perovskite can be tolerated in isolation due to its remarkable ability to fractionate lithophile elements. Indeed, Ca-perovskite is limited to only a few percent in a deep mantle crystal assemblage. Removal from a magma ocean of approximately 13% of a deep mantle assemblage comprised of Mg-perovskite, Ca-perovskite and ferropericlase in the proportions 93:3:4 produces a residual magma with a superchondritic Ca/Al ratio matching that of the model convecting mantle. This amount of crystal separation generates fractionations in other refractory lithophile elements ratios that generally mimic those observed in the convecting mantle. Further, the residual magma is expected to have subchondritic Sm/Nd and Lu/Hf ratios. Modeling shows that up to 15% crystal separation of the deep mantle assemblage from an early magma ocean could have yielded a convecting mantle reservoir with 143Nd/144Nd and 176Hf/177Hf isotopic compositions that remain internal to the array observed for modern oceanic volcanic rocks. If kept in isolation, the residual magma and deep crystal piles would grow model isotopic compositions that are akin to enriched mantle 1 (EM1) and HIMU reservoirs, respectively, in Nd-Hf isotopic space.  相似文献   

9.
Summary The clinopyroxene suites from lherzolite nodules from Mts. Leura and Noorat (Victoria, Australia) have been investigated by X-ray diffraction and electron probe microanalyses (Dal Negro et al., 1984; Cundari et al., 1986).The evolution of the host nodule is shown by general depletion of AlIv, AVI, Ti4+, Fe2+ and enrichment of Si, Mgm,, Fe3+, Cr3+, Ca, while Na depletion occurs only in the clinopyroxenes from Mt. Noorat. Different mechanisms of cation substitution are thus involved in the two clinopyroxene suites, suggesting different total pressures of equilibration in the stability field of spinel.Modifications involving the M1 octahedron are mainly ascribed to variable amounts of trivalent cations, the volume of the M 1 site increasing with decreasing content of trivalent cations in each suite. The differences in M 1 site configuration between the Mt. Leura and Mt. Noorat clinopyroxene suites are ascribed to the different amounts of A1v1 and FeM,.The volume of the T tetrahedral site is generally related to A1Iv in each suite. An increase in T site volume from Mt. Leura to Mt. Noorat clinopyroxenes was found however, due to lengthening of the T-Obrg bond lengths, for similar AIIv contents. The volume of the M2 site, generally related to Ca content, was generally higher in the Noorat clinopyroxenes for similar Ca (and Ca + Na) contents, due to the longer M2-O3C1 bond length, strongly related to Na content. Cell volume is linearly correlated to M 1 volume in each suite, but is definitely higher in the Noorat clinopyroxenes for similar M 1 volume. All the structural data show that the total pressure of equilibration in the Noorat clinopyroxenes was lower than that in the Leura clinopyroxenes, as suggested by chemical data.
Die Kristallchemie von hochdruck-klinopyroxenen aus spinell-lherzolithknollen von Mt. Leura und Mt. Noorat, Victoria, Australien
Zusammenfassung Die Klinopyroxenparagenesen aus Lherzolitheinschlüssen von Mt. Leura und Mt. Noorat (Victoria, Australien) wurden mittels Röntgendiffraktometrie und Elektronenmikrosonde untersucht (Dal Negro et al., 1984; Cundari et al., 1986). Die Lherzolitheinschlüsse zeigen generell eine Abnahme von AlIV, AlVI, Ti4+, Fe MI 2+ und eine Zunahme von Si, Mgm,, Fe3+, Cr3+ und Ca. Eine Abnahme von Na tritt nur in Klinopyroxenen von Mt. Noorat auf. Verschiedene Substitutions-Mechanismen der Kationen weisen auf verschiedene Equilibrationsdrucke im Stabilitätsbereich der Spinelle hin und sind daher in den beiden Klinopyroxenserien zu berücksichtigen. Modifikationen in der oktaedrischen M1-Position wurden vor allem dem wechselnden Anteil an dreiwertigen Kationen zugeschrieben, wobei in jeder der beiden Serien das Volumen der Ml-Position mit abnehmenden Gehalten dreiwertiger Kationen zunimmt. Die unterschiedliche Konfiguration der M1-Position der Klinopyroxene von Mt. Leura und Mt. Noorat wird mit unterschiedlichen Gehalten an AlVI und Fe MI 2+ , in Zusammenhang gebracht.Das Volumen der tetraedrischen T-Position ist normalerweise mit den Gehalten an AllIV in jeder Serie verknüpft. Ein Vergleich der Klinopyroxene von Mt. Leura und Mt. Noorat zeigte jedoch, daß bei gleichen Gehalten an AlVI das Volumen der tetraedrischen Position infolge einer Aufwertung der T-Obrg.-Bindungen zunimmt. Das Volumen der M2-Position, üblicherweise mit dem Ca-Gehalt korreliert, ist in den Klinopyroxenen von Mt. Noorat bei ähnlichen Ca (und Ca f Na) Gehalten infolge größerer M2--O3C1-Abstände größer. Sie stehen also mit den Na-Gehalten in Verbindung.Das Volumen der Elementarzelle korreliert mit dem der M1-Position in jeder Serie; es ist aber in den Klinopyroxenen von Mt. Noorat deutlich höher. Die Ergebnisse der Strukturuntersuchungen zeigen-wie auch die chemischen Daten-, daß die genannten Equilibrationsdrucke für die Klinopyroxene von Mt. Noorat niedriger waren als für die von Mt. Leura.


With 2 Figures  相似文献   

10.
Xenolith JJG41 is from the Roberts Victor kimberlite and isa bimineralic eclogite which is striking for its Al- and Ca-richclinopyroxene crystals showing garnet exsolution lamellae. Thedevelopment of the exsolution has been interpreted as a resultof a slow cooling at depth from near-solidus conditions (c.1400?C) towards normal mantle lithosphere temperatures (Harte& Gurney, 1975). The clinopyroxene retains marked compositionalgradients adjacent to the garnet lamellae and the present paperis concerned with the generation and preservation of these diffusiongradients within a rock from the Earth's mantle In order to understand the mechanism of exsolution reactiona re-examination has been made of the microtexture and chemistryof the garnet lamellae in relation to the compositional gradientsin adjacent clinopyroxene. Three sets of garnet lamellae, whichappear to have crystallized in sequence, may be recognised:type A, large lamellae, nucleated first and closest to the transformationtemperature; type B of intermediate size and age; and type C,small lamellae, nucleated last and with the greatest overstepof the transformation temperature. The major compositional zoning in JJG41 clinopyroxene, a decreaseof Al as Si and Mg increase, is consistent with the garnet growthreaction 2Diop+Al2Si–1Mg–1=2Gros, 1Py.Ca, unlikemost of the elements, shows very flat composition profiles,but with a higher concentration than the initial Ca contentof the unexsolved clinopyroxene. Garnet lamellae are individuallyhomogeneous, but Ca contents vary between lamellae as a functionof lamellae size. In contrast the Fe/Mg distribution coefficientsat interfaces between garnet and clinopyroxene are relativelyconstant irrespective of garnet size. The redistribution of the principal cations—Ca, Fe, Mg,Al, Si—between and within the clinopyrox ene and garnet,during garnet exsolution and cooling, obviously proceeded differentlyfor different elements. Two principal stages in the coolinghistory may be identified: (1) The growth of the sets of garnetlamellae controlled by Al2Mg–1Si–1 redistributionin clinopyroxene. This redistribution was both part of the nettransfer reaction creating garnet, and an exchange reactionin clinopyroxene essential for the diffusional transport ofAl to the growing garnet. Al diffusion in clinopyroxene wasprobably the rate-limiting step, and all other cations, Ca andFe as well as Mg and Si, were mobile during this stage. (2)The occurrence, after the cessation of garnet growth, of diffusionof Fe, Mg and Ca in garnet and interdiffusion of Fe-Mg in clinopyroxene.This resulted in the setting of the KD Fe-Mg at the Cpx-Gt interfacesto a roughly constant value equivalent to approximately 1000?C,which is taken to be the final (‘freezing-in’) temperaturefor redistribution of any elements. During this post garnet-growthstage Ca also became homogenized within individual garnet lamellae,but there is no evidence of Ca equilibration with the clinopyroxene.Under the P-T conditions operating, the initial clinopyroxenecomposition probably resulted in a maximum (M2 site fully occupied)Ca content in clinopyroxene during the stage of garnet growth,and this was maintained during the post-growth stage.  相似文献   

11.
Rare-earth element distribution in the rocks and minerals of the olivinite-clinopyroxenitemelilitolite-melteigite-ijolite-nepheline syenite series was analyzed to study the evolution trends of the alkaline-ultrabasic series of the Kola province. The contents of REE and some other trace elements were determined in olivine, melilite, clinopyroxene, nepheline, apatite, perovskite, titanite, and magnetite. It was established that distribution of most elements in the rocks of the Kovdor, Afrikanda, Vuoriyarvi, and other massifs differ from that in the Khibiny ultrabasic-alkaline series, being controlled by perovskite crystallization. Primary olivine-melanephelinite melts of the minor ultrabasic-alkaline massifs are characterized by the early crystallization of perovskite, the main REE-Nb-Ta-Th-U depository. Precipitation of perovskite simultaneously with olivine and clinopyroxene results in the depletion of residual magma in rare-earth elements and formation of low-REE- and HFSE ijolite and nepheline syenite derivatives. In contrast, the formation of the Khibiny ultrabasic-alkaline series was complicated by mixing of olivine melanephelinite magma with small batches of phonolitic melt. This led to a change in crystallization order of REE-bearing titanates and Ti-silicates and accumulation of the most incompatible elements in the late batches of the melt. As a result, the Khibiny ijolites have the highest REE contents, which are accommodated by high-REE apatite and titanite.  相似文献   

12.
Low-Ca pyroxenes play an important role in mantle melting, melt-rock reaction, and magma differentiation processes. In order to better understand REE fractionation during adiabatic mantle melting and pyroxenite-derived melt and peridotite interaction, we developed a parameterized model for REE partitioning between low-Ca pyroxene and basaltic melts. Our parameterization is based on the lattice strain model and a compilation of published experimental data, supplemented by a new set of trace element partitioning experiments for low-Ca pyroxenes produced by pyroxenite-derived melt and peridotite interaction. To test the validity of the assumptions and simplifications used in the model development, we compared model-derived partition coefficients with measured partition coefficients for REE between orthopyroxene and clinopyroxene in well-equilibrated peridotite xenoliths. REE partition coefficients in low-Ca pyroxene correlate negatively with temperature and positively with both calcium content on the M2 site and aluminum content on the tetrahedral site of pyroxene. The strong competing effect between temperature and major element compositions of low-Ca pyroxene results in very small variations in REE partition coefficients in orthopyroxene during adiabatic mantle melting when diopside is in the residue. REE partition coefficients in orthopyroxene can be treated as constants at a given mantle potential temperature during decompression melting of lherzolite and diopside-bearing harzburgite. In the absence of diopside, partition coefficients of light REE in orthopyroxene vary significantly, and such variations should be taken into consideration in geochemical modeling of REE fractionation in clinopyroxene-free harzburgite. Application of the parameterized model to low-Ca pyroxenes produced by reaction between pyroxenite-derived melt and peridotite revealed large variations in the calculated REE partition coefficients in the low-Ca pyroxenes. Temperature and composition of starting pyroxenite must be considered when selecting REE partition coefficients for pyroxenite-derived melt and peridotite interaction.  相似文献   

13.
The petrography and mineral composition of a mantle-derived garnet peridotite xenolith from the V. Grib kimberlite pipe (Arkhangelsk Diamond Province, Russia) was studied. Based on petrographic characteristics, the peridotite xenolith reflects a sheared peridotite. The sheared peridotite experienced a complex evolution with formation of three main mineral assemblages: (1) a relict harzburgite assemblage consist of olivine and orthopyroxene porphyroclasts and cores of garnet grains (Gar1) with sinusoidal rare earth elements (REE) chondrite C1 normalized patterns; (2) a neoblastic olivine and orthopyroxene assemblage; (3) the last assemblage associated with the formation of clinopyroxene and garnet marginal zones (Gar2). Major and trace element compositions of olivine, orthopyroxene, clinopyroxene and garnet indicate that both the neoblast and clinopyroxene-Gar2 mineral assemblages were in equilibrium with a high Fe-Ti carbonate-silicate metasomatic agent. The nature of the metasomatic agent was estimated based on high field strength elements (HFSE) composition of olivine neoblasts, the garnet-clinopyroxene equilibrium condition and calculated by REE-composition of Gar2 and clinopyroxene. All these evidences indicate that the agent was a high temperature carbonate-silicate melt that is geochemically linked to the formation of the protokimberlite melt.  相似文献   

14.
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta.  相似文献   

15.
It is well known that in pyroxene structure,there are two metal sites,M1 and M2.Generally speaking,Ferrous iron in each of these sites would normally be expected to give rise to a doublet,However,anomalies have been found in the relative areas of the peaks in the room temperature spectra of some clinopyroxene(CPX)when the above assignment is followed.According to the calculation of Next Nearest Neighbor configurations of divalent cations in M1,we found that the four configurations of M1 can be divided into two groups.One group is 3Ca configuration that increases with the content of Ca(p.f.u);the other group is made up of three No-3Ca configurations that decrease with the content of Ca.The two groups contribute to the spectrum structure of M1.so in this study we fit two doublets for ferrous iron in M1.Though there were several reports on Fe^3 in tetrahedral site previously,it was not sure that Fe^3 occupies the T site is a universal fact in CPX,despite of the content of Al.We found that the Fe^3 in the T site fitted by Moessbauer spectroscopy is negatively correlated to the Si content in the T site and positively correlated to the Fe^3 in the T site estimated on the supposition that Fe^3 and Al occupy the T site randomly.If it is true.it is important in the modeling of ion exchange geobarometries and geothermomeries.  相似文献   

16.
Mantle peridotites of the External Liguride (EL) Units (Northern Apennines) mainly consist of fertile spinel-lherzolites partially recrystallized to plagioclase-facies assemblages, and are consequently appropriate to investigate the interphase element partitioning related to the transition from spinel- to plagioclase-facies stability field. Evidence for the development of the plagioclase-facies assemblage is mainly given by: (1) large exsolution lamellae of orthopyroxene and plagioclase within spinel-facies clinopyroxene; (2) plagioclase rims around spinel; (3) granoblastic domains made up of olivine+plagioclase±clino-and orthopyroxene. In situ major and trace [REE (rare-earth elements), Ti, Sc, V, Cr, Sr, Y, Zr and Ba] element mineral analyses have been performed, by electron and ion probe, on selected samples which show the progressive development of the plagioclase-bearing assemblage. The main compositional variations observed during the change from spinel- to plagioclase-facies minerals are as follows: (1) clinopyroxenes decrease in Al, Na, Sr, Eu/Eu* and increase in Y, V, Sc, Cr, Zr and Ti; (2) amphiboles decrease in Eu/Eu*, Sr, Ba and increase in Zr and V; (3) spinels decrease in Al and increase in Cr and Ti. The most striking feature is the decoupling in the behaviour of similarly incompatible elements (D about 0.1) in clinopyroxene, e.g. Sr decrease is mirrored by Zr increase. Massbalance calculations indicate that the trace element interphase redistribution documented in the EL peridotites occurred in a closed system and in response to the metamorphic reaction governing the transition from the spinel- to the plagioclase-facies stability field. The observed element partitioning reveals, moreover, that subsolidus re-equilibration processes in the upper mantle produce HFSE (high-field-strength element)/REE fractionation in minerals, which must be evaluated for a reliable determination of mineral-melt distribution coefficients. The results of this study furnish evidence for subsolidus metamorphic evolution during decompression, without concomitant partial melting processes. This is consistent with the interpretation that the EL peridotites represent subcontinental lithospheric mantle emplaced at the surface in response to lithospheric thinning and tectonic denudation mechanisms related to the Triassic-Jurassic rifting of the Ligure-Piedmontese basin.  相似文献   

17.
在1.5GPa,950℃,恒温101h条件下对华北北缘太古宙地体中的斜长角闪岩块状样品进行了脱水部分熔融实验,实验产物组合为Hb+Cpx+Gt+Gl,获得的熔体为花岗闪长质成分。利用LA-ICP-MS测试了矿物和熔体的微量元素,获得该体系内各矿物/熔体的微量元素分配系数。角闪石、单斜辉石和石榴石的分配系数与前人在类似条件下的实验结果基本一致。这说明无论实验的初始物质是粉末状还是块状,对元素的分配没有太大的影响。各矿物的REE分配系数对离子半径的拟合曲线很好地符合晶格应变弹性模型。整体特征上,角闪石、单斜辉石和石榴石的LILE,LREE分配系数较低,而HREE的分配系数较高,石榴石具有强烈富集HREE的特征。由此,造成实验熔体表现出LILE、LREE富集而HREE亏损的特征。残留相中无金红石,使得熔体中没有明显的Nb、Ta负异常。熔体的主-微量元素特征符合华北北缘中生代埃达克质岩石的基本特征,进一步支持了该类岩石"可能起源于古老下地壳的部分熔融"的成因模式。  相似文献   

18.
Anders Lindh 《Lithos》1975,8(2):151-161
A population of 117 coexisting nonalkaline pyroxene pairs has been studied statistically to evaluate compositional and thermal effects on the element distribution. KDMgopx-cpx is influenced by the Fe/Mg-ratio, by the Ca content—especially of clinopyroxene—and by the content of tetrahedral Al. Fe and tetrahedral Al are found to be negatively correlated. A principal component analysis based on the variation of Si, AlIV, AlVI, Fe, Mg, Mn, Ca is performed. Dropping of highly correlated variables does not affect the result significantly. The first principal component reflects the major chemical variation in Fe and Mg. When using ferrous and ferric iron as separate entries of the analysis, either the second or the third component demonstrates a temperature dependence. It is, however, not possible to obtain pure temperature and chemical components due to the composition not being uncorrelated to temperature of formation. From these components a graph reflecting temperature of formation has been constructed.  相似文献   

19.
A series of clinopyroxenes (Cpx) in peridotitic spinel nodules from Rio Grande do Norte, North-Eastern Brazil, was investigated by X-ray diffraction and electron microprobe analyses and compared with an analogous series from spinel peridotite nodules from Mt. Leura, Victoria, Australia. The examined Cpx series is mainly characterized by increasing Mg/(Mg+Fe2+) ratio (i.e. increase of refractory character of the host nodules), by the substitutions of Alvi vs Mg in the M1 site and Na vs (Ca+Mg) in the M2 site, whereas Aliv in the T site remains substantially constant. The strong Na depletion in the Brazilian Cpx causes a different charge balance from that in the Australian Cpx, in which Na remains quite constant. This feature, associated with the differences in polyhedral and cell volumes which are significantly higher in the Brazilian Cpx than in those of the Australian Cpx, suggests that the Brazilian Cpx crystal chemistry may be related to a lower pressure regime, compared with that of the Australian Cpx series.  相似文献   

20.
巨晶普通辉石的M1位分裂李一良,支霞臣,李玉芝,李铁,张裕恒(中国科学技术大学,合肥230026)关键词巨晶辉石,M1位分裂,面积约束法,近邻边效应,T位铁单斜辉石的穆斯堡尔谱学研究历时已久。但由于其晶体结构和成份的复杂性、化学不均一性及出溶现象等[...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号