首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discoseismic c modes in accretion discs have been invoked to explain low-frequency variabilities observed in black hole X-ray binaries. These modes are trapped in the innermost region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c modes using the Wentzel-Kramers-Brillouin (WKB) approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10 per cent of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable.  相似文献   

2.
We consider the inward propagation of warping and eccentric disturbances in discs around black holes under a wide variety of conditions. In our calculations, we use secular theories of warped and eccentric discs and assume the deformations to be stationary and propagating in a disc model similar to regions (a) and (b) of Shakura & Sunyaev discs. We find that the propagation of deformations to the innermost regions of the disc is facilitated for low viscous damping and high accretion rate. We relate our results to the possible excitation of trapped inertial modes, and to the observations of high-frequency quasi-periodic oscillations (QPOs) in black hole systems in the very high spectral state.  相似文献   

3.
This paper concerns the interaction between non-axisymmetric inertial waves and their corotation resonances in a hydrodynamical disc. Inertial waves are of interest because they can localize in resonant cavities circumscribed by Lindblad radii and, as a consequence, can exhibit discrete oscillation frequencies that may be observed. It is often hypothesized that these trapped eigenmodes are affiliated with the poorly understood quasi-periodic oscillation phenomenon. We demonstrate that a large class of non-axisymmetric three-dimensional (3D) inertial waves cannot manifest as trapped normal modes. This class includes any inertial wave whose resonant cavity contains a corotation singularity. Instead, these 'singular' modes constitute a continuous spectrum and, as an ensemble, are convected with the flow, giving rise to shearing waves. Finally, we present a simple demonstration of how the corotation singularity stabilizes 3D perturbations in a slender torus.  相似文献   

4.
We study global non-axisymmetric oscillation modes trapped near the inner boundary of an accretion disc. Observations indicate that some of the quasi-periodic oscillations (QPOs) observed in the luminosities of accreting compact objects (neutron stars, black holes and white dwarfs) are produced in the innermost regions of accretion discs or boundary layers. Two simple models are considered in this paper. The magnetosphere–disc model consists of a thin Keplerian disc in contact with a uniformly rotating magnetosphere with and low plasma density, while the star–disc model involves a Keplerian disc terminated at the stellar atmosphere with high density and small density scaleheight. We find that the interface modes at the magnetosphere–disc boundary are generally unstable due to Rayleigh–Taylor and/or Kelvin–Helmholtz instabilities. However, differential rotation of the disc tends to suppress Rayleigh–Taylor instability, and a sufficiently high disc sound speed (or temperature) is needed to overcome this suppression and to attain net mode growth. On the other hand, Kelvin–Helmholtz instability may be active at low disc sound speeds. We also find that the interface modes trapped at the boundary between a thin disc and an unmagnetized star do not suffer Rayleigh–Taylor or Kelvin–Helmholtz instability, but can become unstable due to wave leakage to large disc radii and, for sufficiently steep disc density distributions, due to wave absorption at the corotation resonance in the disc. The non-axisymmetric interface modes studied in this paper may be relevant to the high-frequency QPOs observed in some X-ray binaries and in cataclysmic variables.  相似文献   

5.
We study the excitation of density and bending waves and the associated angular momentum transfer in gaseous discs with finite thickness by a rotating external potential. The disc is assumed to be isothermal in the vertical direction and has no self-gravity. The disc perturbations are decomposed into different modes, each characterized by the azimuthal index m and the vertical index n , which specifies the nodal number of the density perturbation along the disc normal direction. The   n = 0  modes correspond to the two-dimensional density waves previously studied by Goldreich & Tremaine and others. In a three-dimensional disc, waves can be excited at both Lindblad resonances (LRs; for modes with   n = 0, 1, 2, …  ) and vertical resonances (VRs; for the   n ≥ 1  modes only). The torque on the disc is positive for waves excited at outer Lindblad/vertical resonances and negative at inner Lindblad/vertical resonances. While the   n = 0  modes are evanescent around corotation, the   n ≥ 1  modes can propagate into the corotation region where they are damped and deposit their angular momenta. We have derived analytical expressions for the amplitudes of different wave modes excited at LRs and/or VRs and the resulting torques on the disc. It is found that for   n ≥ 1  , angular momentum transfer through VRs is much more efficient than LRs. This implies that in some situations (e.g. a circumstellar disc perturbed by a planet in an inclined orbit), VRs may be an important channel of angular momentum transfer between the disc and the external potential. We have also derived new formulae for the angular momentum deposition at corotation and studied wave excitations at disc boundaries.  相似文献   

6.
The effects of magnetic coupling (MC) process on the inner edge of the disc are discussed in detail. It is shown that the inner edge can deviate from the innermost stable circular orbit (ISCO) due to the magnetic transfer of energy and angular momentum between a Kerr black hole (BH) and its surrounding accretion disc. It turns out that the inner edge could move inwards and outwards for the BH spin a * being greater and less than 0.3594, respectively. The MC effects on disc radiation are discussed based on the displaced inner edge. A very steep emissivity can be provided by the MC process, which is consistent with the observation of MCG-6-30-15. In addition, the BH spins of GRO J1655−40 and GRS 1915+105 are detected by X-ray continuum fitting based on this model.  相似文献   

7.
Strong evidence for the presence of a warped Keplerian accretion disc in NGC 4258 (M 106) has been inferred from the kinematics of water masers detected at subparsec scales. Assuming a power-law accretion disc and using constraints on the disc parameters derived from observational data, we have analysed the relativistic Bardeen–Petterson effect driven by a Kerr black hole as the potential physical mechanism responsible for the disc warping. We found that the Bardeen–Petterson radius is comparable to or smaller than the inner radius of the maser disc (independent of the allowed value for the black hole spin parameter). Numerical simulations for a wide range of physical conditions have shown that the evolution of a misaligned disc due to the Bardeen–Petterson torques usually produces an inner flat disc and a warped transition region with a smooth gradient in the tilt and twist angles. Since this structure is similar to that seen in NGC 4258, we propose that the Bardeen–Petterson effect may be responsible for the disc warping in this galaxy. We estimated the time-scale necessary for the disc inside of the Bardeen–Petterson radius to align with the black hole's equator, as a function of the black hole spin. Our results show that the Bardeen–Petterson effect can align the disc within a few billion years in the case of NGC 4258. Finally, we show that if the observed curvature of the outer anomalous arms in the galactic disc of NGC 4258 is associated with the precession of its radio jet/counterjet, then the Bardeen–Petterson effect can provide the required precession period.  相似文献   

8.
We consider the power of a relativistic jet accelerated by the magnetic field of an accretion disc. It is found that the power extracted from the disc is mainly determined by the field strength and configuration of the field far from the disc. Comparing it with the power extracted from a rotating black hole, we find that the jet power extracted from a disc can dominate over that from the rotating black hole. However, in some cases, the jet power extracted from a rapidly rotating hole can be more important than that from the disc, even if the poloidal field threading the hole is not significantly larger than that threading the inner edge of the disc. The results imply that the radio-loudness of quasars may be governed by its accretion rate, which might be regulated by the central black hole mass. It is proposed that the different disc field generation mechanisms might be tested against observations of radio-loud quasars if their black hole masses are available.  相似文献   

9.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

10.
Compact remnants – stellar mass black holes and neutron stars formed in the inner few parsec of galactic centres are predicted to sink into the central parsec due to dynamical friction on low-mass stars, forming a high concentration cusp. Same physical region may also contain very high-density molecular clouds and accretion discs that are needed to fuel supermassive black hole (SMBH) activity. Here we estimate gas capture rates on to the cusp of stellar remnants, and the resulting X-ray luminosity, as a function of the accretion disc mass. At low disc masses, most compact objects are too dim to be observable, whereas in the high disc case most of them are accreting at their Eddington rates. We find that for low accretion disc masses, compact remnant cusps may be more luminous than the central SMBHs. This 'diffuse' emission may be of importance for local moderately bright active galactic nuclei (AGNs), especially low-luminosity AGNs. We also briefly discuss how this expected emission can be used to put constraints on the black hole cusp near our Galactic Centre.  相似文献   

11.
We investigate the growth or decay rate of the fundamental mode of even symmetry in a viscous accretion disc. This mode occurs in eccentric discs and is known to be potentially overstable. We determine the vertical structure of the disc and its modes, treating radiative energy transport in the diffusion approximation. In the limit of very long radial wavelength, an analytical criterion for viscous overstability is obtained, which involves the effective shear and bulk viscosity, the adiabatic exponent, and the opacity law of the disc. This differs from the prediction of a two-dimensional model. On shorter wavelengths (a few times the disc thickness), the criterion for overstability is more difficult to satisfy because of the different vertical structure of the mode. In a low-viscosity disc a third regime of intermediate wavelengths appears, in which the overstability is suppressed as the horizontal velocity perturbations develop significant vertical shear. We suggest that this effect determines the damping rate of eccentricity in protoplanetary discs, for which the long-wavelength analysis is inapplicable and overstability is unlikely to occur on any scale. In thinner accretion discs and in decretion discs around Be stars overstability may occur only on the longest wavelengths, leading to the preferential excitation of global eccentric modes.  相似文献   

12.
The inner parts of black‐hole accretion discs shine in X‐rays which can be monitored and the observed spectra can be used to trace strong gravitational fields in the place of emission and along paths of light rays. This paper summarizes several aspects of how the spectral features are influenced by relativistic effects. We focus our attention onto variable and broad emission lines, origin of which can be attributed to the presence of orbiting patterns – spots and spiral waves in the disc. We point out that the observed spectrum can determine parameters of the central black hole provided the intrinsic local emissivity is constrained by theoretical models. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A systematic study of the dependence on disc parameters and input physics, such as opacity and the treatment of convection, of strange-mode instabilities in thin accretion discs, which have been discovered recently, is presented. The instabilities are found to exist for a wide range of parameters, are partly very robust, and their growth rates can reach the dynamical range. Even discs on galactic scales around massive black holes are affected by them. Two groups of instabilities can be distinguished, the first of which is related to the radiation-pressure-dominated part of the disc, and the second to helium/hydrogen ionization. By application of the NAR approximation, both of them can be shown to be of mechanical origin, and the classical κ -mechanism can be excluded as the instability mechanism. A heuristic model for strange-mode instabilities proposed in the context of stellar strange-mode instabilities in luminous stars seems to be applicable to the group associated with dominant radiation pressure.  相似文献   

14.
One-armed oscillation modes in the circumstellar discs of Be stars may explain the cyclical variations in their emission lines. We show that a 3D effect, involving vertical motion and neglected in previous treatments, profoundly influences the dynamics. Using a secular theory of eccentric discs that reduces the problem to a second-order differential equation, we show that confined prograde modes are obtained for all reasonable disc temperatures and stellar rotation rates. We confirm these results using a numerical analysis of the full set of linearized equations for 3D isothermal discs including viscous terms that couple the horizontal motions at different altitudes. In order to make these modes grow, viscous damping must be overcome by an excitation mechanism such as viscous overstability.  相似文献   

15.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

16.
We compare standard models of accretion discs around black holes (BHs) that include the appropriate zero-torque inner boundary condition and relativistic effects on the emission and propagation of radiation. The comparison is performed adopting the multicolour disc blackbody model (MCD) as reference and looking for the parameter space in which it is in statistical agreement with 'more physical' accretion disc models. We find simple 'recipes' that can be used for adjusting the estimates of the physical inner radius of the disc, the BH mass and the accretion rate inferred using the parameters of the MCD fits. We applied these results to four ultraluminous X-ray sources for which MCD spectral fits of their X-ray soft spectral components have been published and find that, in three cases (NGC 1313 X-1, X-2 and M 81 X-9), the BH masses inferred for a standard disc around a Schwarzschild BH are in the interval  ∼100–200 M  . Only if the BH is maximally rotating are the masses comparable to the much larger values previously derived in the literature.  相似文献   

17.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

18.
Linear transient phenomena induced by flow non-normality in thin self-gravitating astrophysical discs are studied using the shearing sheet approximation. The considered system includes two modes of perturbations: vortex and (spiral density) wave. It is shown that self-gravity considerably alters the vortex mode dynamics; its transient (swing) growth may be several orders of magnitude stronger than in the non-self-gravitating case and two to three times larger than the transient growth of the wave mode. Based on this finding, we comment on the role of vortex mode perturbations in a gravitoturbulent state. We also describe the linear coupling of the perturbation modes, caused by the differential character of disc rotation. The coupling is asymmetric: vortex mode perturbations are able to excite wave mode perturbations, but not vice versa. This asymmetric coupling lends additional significance to the vortex mode as a participant in spiral density waves and shock manifestations in astrophysical discs.  相似文献   

19.
We study and elucidate the mechanism of spiral density wave excitation in a differentially rotating flow with turbulence which could result from the magneto-rotational instability. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these in a shearing box domain, subject to the boundary conditions of periodicity in shearing coordinates, using a WKBJ method. It is found that, for a particular azimuthal wavelength, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Trailing waves of equal amplitude propagating in opposite directions are produced, both of which produce an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wavelength.
By solving the wave amplitude equations numerically, we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation completely, the important wave source terms need to be specified. Assuming conditions of weak non-linearity, these can be identified and are associated with a quantity related to the potential vorticity, being the only survivors in the linear regime. Under the additional assumption that the source has a flat power spectrum at long azimuthal wavelengths, the optimal azimuthal wavelength produced is found to be determined solely by the WKBJ response and is estimated to be  2π H   , with H being the nominal disc scaleheight. In a following paper by Heinemann & Papaloizou, we perform direct three-dimensional simulations and compare results manifesting the wave excitation process and its source with the assumptions made and the theory developed here in detail, finding excellent agreement.  相似文献   

20.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号