首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conditions for the acceleration of the spatial motions of stars by close-binary supermassive black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative orbital velocities of the binary-SMBH components. In the stage when the binary components are merging due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most massive binary black-holes (M ? 109M) can also accelerate main-sequence stars with solar or subsolar masses to such velocities.  相似文献   

2.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

3.
A model for the formation of supermassive black holes at the center of a cluster of primordial black holes is developed. It is assumed that ~10?3 of the mass of the Universe consists of compact clusters of primordial black holes that arose as a result of phase transitions in the early Universe. These clusters also serve as centers for the condensation of dark matter. The formation of protogalaxies with masses of the order of 2 × 108 M at redshift z = 15 containing clusters of black holes is investigated. The nuclei of these protogalaxies contain central black holes with masses ~105 M , and the protogalaxies themselves resemble dwarf spherical galaxies with their maximum density at their centers. Subsequent merging of these induced protogalaxies with ordinary halos of dark matter leads to the standard picture for the formation of the large-scale structure of the Universe. The merging of the primordial black holes leads to the formation of supermassive black holes in galactic nuclei and produces the observed correlation between the mass of the central black hole and the bulge velocity dispersion.  相似文献   

4.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

5.
We consider the evolutionary status of observed close binary systems containing black holes and Wolf-Rayet (WR) stars. When the component masses and the orbital period of a system are known, the reason for the formation of a WR star in an initial massive system of two main-sequence stars can be established. Such WR stars can form due to the action of the stellar wind from a massive OB star (MOB≥50M), conservative mass transfer between components with close initial masses, or the loss of the common envelope in a system with a large (up to ~25) initial component mass ratio. The strong impact of observational selection effects on the creation of samples of close binaries with black holes and WR stars is demonstrated. We estimate theoretical mass-loss rates for WR stars, which are essential for our understanding the observed ratio of the numbers of carbon and nitrogen WR stars in the Galaxy \(\dot M_{WR} (M_ \odot yr^{ - 1} ) = 5 \times 10^{ - 7} (M_{WR} /M_ \odot )^{1.3} \). We also estimate the minimum initial masses of the components in close binaries producing black holes and WR stars to be ~25M. The spatial velocities of systems with black holes indicate that, during the formation of a black hole from a WR star, the mass loss reaches at least several solar masses. The rate of formation of rapidly rotating Kerr black holes in close binaries in the Galaxy is ~3×10?6 yr?1. Their formation may be accompanied by a burst of gamma radiation, possibly providing clues to the nature of gamma-ray bursts. The initial distribution of the component mass ratios for close binaries is dNdq=dM2/M1 in the interval 0.04?q0≤1, suggesting a single mechanism for their formation.  相似文献   

6.
The relationship between the masses of the central, supermassive black holes (M bh) and of the nuclear star clusters (M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar populationM *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. ThemassM nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher massesM bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6–0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106?107 M (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.  相似文献   

7.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

8.
The statistical relation between the masses of supermassive black holes (SMBHs) in disk galaxies and the kinematic properties of their host galaxies is analyzed. Velocity estimates for several galaxies obtained earlier at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the data for other galaxies taken from the literature are used. The SMBH masses correlate well with the rotational velocities at a distance of R ≈ 1 kpc, V 1, which characterize the mean density of the central region of the galaxy. The SMBH masses correlate appreciably weaker with the asymptotic velocity at large distances from the center and the angular velocity at the optical radius R 25. We have found for the first time a correlation between the SMBH mass and the total mass of the galaxy within the optical radius R 25, M 25, which includes both baryonic and “dark” mass. The masses of the nuclear star clusters in disk galaxies (based on the catalog of Seth et al.) are also related to the dynamical mass M 25; the correlations with the luminosity and rotational velocity of the disk are appreciably weaker. For a given value of M 25, the masses of the central cluster are, on average, an order of magnitude higher in S0-Sbc galaxies than in late-type galaxies, or than the SMBH masses. We suggest that the growth of the SMBH occurs in the forming “classical” bulge of the galaxy over a time < 109 yr, during a monolithic collapse of gas in the central region of the protogalaxy. The central star clusters form on a different time scale, and their stellar masses continue to grow for a long time after the growth of the central black hole has ceased, if this process is not hindered by activity of the nucleus.  相似文献   

9.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

10.
The observed properties of Wolf-Rayet stars and relativistic objects in close binary systems are analyzed. The final masses M CO f for the carbon-oxygen cores of WR stars in WR + O binaries are calculated taking into account the radial loss of matter via stellar wind, which depends on the mass of the star. The analysis includes new data on the clumpy structure of WR winds, which appreciably decreases the required mass-loss rates $\dot M_{WR}$ for the WR stars. The masses M CO f lie in the range (1–2)M –(20–44)M and have a continuous distribution. The masses of the relativistic objects M x are 1–20M and have a bimodal distribution: the mean masses for neutron stars and black holes are 1.35 ± 0.15M and 8–10M , respectively, with a gap from 2–4M in which no neutron stars or black holes are observed in close binaries. The mean final CO-core mass is $\overline M _{CO}^f = 7.4 - 10.3M_ \odot$ , close to the mean mass for the black holes. This suggests that it is not only the mass of the progenitor that determines the nature of the relativistic object, but other parameters as well-rotation, magnetic field, etc. One SB1R Wolf-Rayet binary and 11 suspected WR + C binaries that may have low-mass companions (main-sequence or subgiant M-A stars) are identified; these could be the progenitors of low-mass X-ray binaries with neutron stars and black holes.  相似文献   

11.
We show that semi-detached close binary systems with massive (4–25M) black holes are formed in the evolution of massive stellar binaries in which the initial mass of the primary exceeds ~25M. The mass exchange in such systems is maintained by the nuclear evolution of the donor and by its magnetic and induced stellar winds. The donor in such systems can be a main-sequence star, subgiant, non-degenerate helium star, or white dwarf. The evolution of corresponding systems with black-hole masses of 10M is investigated.  相似文献   

12.
The observed mass distribution for the compact remnants of massive stars (neutron stars and black holes) and its relationship to the possible mechanism of ejection of the envelopes of type II and Ib/c supernovae are analyzed. The observed lack of compact remnants with masses 1.5–3 M suggests a magneto-rotational mechanism for the supernovae, and a soft equation of state for neutron stars with limiting masses near 1.5 M . The observational consequences of this hypothesis are discussed.  相似文献   

13.
The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30–100M . The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a “kick”—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.  相似文献   

14.
We analyze the late stages of evolution of massive (M 0 ? 8 M ) close binaries, from the point of view of possible mechanisms for the generation of gamma-ray bursts. It is assumed that a gamma-ray burst requires the formation of a massive (~1 M ), compact (R ? 10 km) accretion disk around a Kerr black hole or neutron star. Such Kerr black holes are produced by core collapses of Wolf-Rayet stars in very close binaries, as well as by mergers of neutron stars and black holes or two neutron stars in binaries. The required accretion disks can also form around neutron stars that were formed via the collapse of ONeMg white dwarfs. We estimate the Galactic rate of events resulting in the formation of rapidly rotating relativistic objects. The computations were carried out using the “Scenario Machine.”  相似文献   

15.
The “Scenario Machine” (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes. We calculate the rates of such events, and plot the mass distributions for merging white dwarfs and main-sequence stars. It is shown that Type Ia supernovae can be used as standard candles only after approximately one billion years of evolution of galaxies. In the course of this evolution, the average energy of Type Ia supernovae should decrease by roughly 10%; the maximum and minimum energies of Type Ia supernovae may differ by no less than by a factor of 1.5. This circumstance must be taken into account at estimating the parameters of the Universe expansion acceleration. According to theoretical estimates, the most massive—as a rule, magnetic—white dwarfs probably originate from mergers of white dwarfs of lower mass. At least some magnetic Ap and Bp stars may form in mergers of low-mass main-sequence stars (M ? 1.5 M ) with convective envelopes.  相似文献   

16.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

17.
We consider the main population of cosmic voids in a heirarchical clustering model. Based on the Press-Schechter formalism modified for regions in the Universe with reduced or enhanced matter densities, we construct the mass functions for gravitationally bound objects of dark matter occupying voids or superclusters. We show that the halo mass functions in voids and superclusters differ substantially. In particular, the spatial density of massive (M ~ 1012 M ) halos is appreciably lower in voids than in superclusters, with the difference in the mass functions being greater for larger masses. According to our computations, an appreciable fraction of the mass of matter in voids should be preserved to the present epoch in the form of primordial gravitationally bound objects (POs) with modest masses (to 10% for M PO < 109 M ) keeping baryons. These primordial objects represent “primary blocks” in the heirarchical clustering model. We argue that the oldest globular clusters in the central regions of massive galaxies are the stellar remnants of these primordial objects: they can form in molecular clouds in these objects, only later being captured in the central regions of massive galaxies in the process of gravitational clustering. Primordial objects in voids can be observed as weak dwarf galaxies or Lyα absorption systems.  相似文献   

18.
19.
Estimates of the masses of supermassive black holes (M bh ) in the nuclei of disk galaxies with known rotation curves are compared with estimates of the rotational velocities V m and the “indicative” masses of the galaxies M i . Although there is a correlation between M bh and V m or M i , it is appreciably weaker than the correlation with the central velocity dispersion. The values of M bh for early-type galaxies (S0-Sab), which have more massive bulges, are, on average, higher than the values for late-type galaxies with the same rotational velocities. We conclude that the black-hole masses are determined primarily by the properties of the bulge and not the rotational velocity or the mass of the galaxy.  相似文献   

20.
We consider the evolution of galaxies in dense galactic clusters. Observations and theoretical estimates indicate that this evolution may be specified to a large extent by collisions between galaxies, as well as interactions between the gaseous components of disk galaxies and intergalactic gas. We analyze collisions between disk galaxies with gaseous components using a simple model based on a comparison of the duration of a collision and the characteristic cooling time for the gas heated by the collision, and also of the relative masses of stars and gas in the colliding disk galaxies. This model is used to analyze scenarios for collisions between disk galaxies with various masses as a function of their relative velocities. Our analysis indicates that galaxies can merge, lose one or both of their gaseous components, or totally disintegrate as a result of a collision; ultimately, a new galaxy may form from the gas lost by the colliding galaxies. Disk galaxies with mass M G and velocities exceeding ~300 (M G/1010 M )1/2 km/s in intergalactic gas in clusters with densities ~10?27 g/cm3 can lose their gas due to the pressure of inflowing intergalactic gas, thereby developing into E(SO) galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号