首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Wangjiazhuang Cu (-Mo) deposit, located within the Zouping volcanic basin in western Shandong Province, China, is unique in this area for having an economic value. In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit, a detailed fluid inclusion study has been conducted, employing the techniques of representative sampling, fluid inclusion petrography, microthermometry, Raman spectroscopy, LA-ICP-MS analysis of single fluid inclusions, as well as cathode fluorescence spectrometer analysis of host mineral quartz. The deposit contains mainly two types of orebodies, i.e. veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatitic-quartz sulfide veins above them. In addition, minor breccia ore occurs locally. Four types of fluid inclusions in the deposit and altered quartz monzonite are identified: L-type one- or two-phase aqueous inclusions, V-type vapor-rich inclusions with V/L ratios greater than 50%–90%, D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite. Ore petrography and fluid inclusion study has revealed a three-stage mineralization process, driven by magmatic-hydrothermal fluid activity, as follows. Initially, a hydrothermal fluid, separated from the parent magma, infiltrated into the quartz monzonite, resulting in its extensive K-Si alteration, as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite. This is followed by the early mineralization, the formation of quartz veinlets and dissemination-stockwork ores. During the main mineralization stage, due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid, the cooling and phase separation caused deposition of metals from the hydrothermal fluids. As a result, the pegmatitic-quartz sulfide-vein ores formed. In the late mineralization stage, decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore. Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages. The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca. 156–182 MPa and 450–650°C, 350–450°C, 18–35 MPa and 280–380°C, 8–15 MPa, respectively, based on the microthermometric data of the fluid inclusions formed at the individual stages.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987111000387   总被引:2,自引:0,他引:2  
Fluid flow is an integral part of hydrothermal mineralization,and its analysis and characterization constitute an important part of a mineralization model.The hydrodynamic study of mineralization deals with analyzing the driving forces,fluid pressure regimes,fluid flow rate and direction,and their relationships with localization of mineralization.This paper reviews the principles and methods of hydrodynamic studies of mineralization,and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure,topographic relief,tectonic deformation, and fluid density change due to heating or salinity variation,depending on specific geologic environments and mineralization processes.The study methods may be classified into three types,megascopic(field) observations, microscopic analyses,and numerical modeling.Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic) fluid systems include horizontal veins,sand injection dikes,and hydraulic breccias.Microscopic studies,especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes(FIPs) can provide important information about fluid temperature,pressure,and fluid-structural relationships,thus constraining fluid flow models.Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer,rock deformation and chemical reactions,in order to simulate the distribution of fluid pressure, temperature,fluid flow rate and direction,and mineral precipitation or dissolution in 2D or 3D space and through time.The results of hydrodynamic studies of mineralization can enhance our understanding of the formation processes of hydrothermal deposits,and can be used directly or indirectly in mineral exploration.  相似文献   

3.
South China is endowed with copious wolframite–quartz vein-type W deposits that provide a significant contribution to the world’s tungsten production. Mineralization is spatially associated with highly evolved granites, which have been interpreted as products of ancient crustal anatexis. Ore veins are mainly hosted in low-grade metamorphosed quartz sandstone, slate and granitic rocks. The ore minerals mainly comprise wolframite, cassiterite, scheelite and pyrite, with minor molybdenite, arsenopyrite and chalcopyrite. Typical steeply dipping veins can be divided into five zones from top to the bottom, namely: (I) thread, (II) veinlet, (III) moderate vein, (IV) thick vein, and (V) thin out zones. In general, three types of fluid inclusions at room temperature are commonly recognized in wolframite and/or quartz from these veins: two-phase liquid-rich (type L), two-phase CO2-bearing (type CB), and CO2-rich (type C). Comparative microthermometry performed on fluid inclusions hosted in wolframite and associated quartz indicates that most wolframite was not co-precipitated with the coexisting quartz. Detailed petrographic observation and cathodoluminescence (CL) imaging on coexisting wolframite and quartz of the Yaogangxian deposit, show repeated precipitation of quartz, wolframite, and muscovite, suggesting a more complex fluid process forming these veins. Previous studies of H-O isotopes and fluid inclusions suggested that the main ore-forming fluids forming the wolframite–quartz vein-type deposits had a magmatic source, whereas an unresolved debate is centered on whether mantle material supplemented the ore-forming fluids. The variable CO2 contents in the ore-forming fluids also implies that CO2 might have had a positive effect on ore formation. Fluid inclusion studies indicate that wolframite was most likely deposited during cooling from an initial H2O + NaCl ± CO2 magmatic fluid. In addition, fluid-phase separation and/or mixing with sedimentary fluid might also have played an important role in promoting wolframite deposition. We speculate that these processes determine the precipitation of W to varying degrees whereas the leading mechanistic cause remains an open question. Comprehensive studies on spatial variation of fluid inclusions show that both the steeply and gently dipping veins are consistent with the “five floors” model that may have broader applications to exploration of wolframite–quartz vein-type deposits. Recent quantitative analysis of wolframite- and quartz-hosted fluid inclusions by laser ablation inductively-coupled plasma mass spectrometry shows enhanced advantages in revealing fluid evolution, tracing the fluid source and dissecting the ore precipitation process. Further studies on wolframite–quartz vein-type W deposits to bring a deeper understanding on ore-forming fluids and the metallogenic mechanism involved.  相似文献   

4.
The Hatu large gold deposit is located on the western margin of the Junggar basin, Xinjiang. Its mineralization is characterized by auriferous quartz veins and Au-bearing altered fracturing zones. Studies on mineralogy, inclusions and decrepitation temperature indicate that the gold deposit was formed by overlapping of two kinds of fluid of different origins, instead of gradual evolution of a single fluid. The auriferous quartz veins are related to magmatism-originated fluid, but the Au-bearing altered fracturing zones to deep-derived fluid. Bonanzas in quartz veins were formed and localized at overlapping positions of two types of fluid under intensive compression.  相似文献   

5.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

6.
Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed.  相似文献   

7.
The timing and duration of quartz cementation in sandstones have been mainly inferred from diagenetic texture, relationship between pore filling minerals, fluid inclusions and isotopic data. Fluid inclusion temperatures from North Sea reservoir sandstones indicate that most of the quartz cement forms at temperature exceeding 90℃ and is continually proceeding after oil emplacement, based on the fluid inclusion temperatures in quartz overgrowth which is approaching the bottom-hole temperatures. The duration of quartz cement after oil emplacement depends upon the saturation of porewater and the distribution of pore water film and the property of water-wet or oil-wet of the reactants. The leaching of K-feldspar by meteoric water requires pore water flow to move the released potassium and sodium and silica out the solution, which suggests the mechanism does not appear to be a major source of silica for quartz cementation. The quartz cementation coincidence with the compaction and pressure solution suggests the major source of silica. The alteration of feldspar by illitization of kaolinite may serve as another important source of silica at deep burial depth. External sources are not need to call on for illustrating the quartz cementation, because there is no evidences for large scale convection of pore water flow occurred in the burial history of reservoir sandstones of middle Jurassic in the North Sea.  相似文献   

8.
Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly ex- hibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock- foring minerals such as feldspar and the formation of secondary minerals such as uranophane..  相似文献   

9.
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the δ13CPDB ranges from 2.01 to 3.34 (‰) whereas the δ18O SMOW ranges from 6.96 to 18.95 (‰). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181℃, with salinity values of 1.06 to 8.04 wt% NaCl eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42-(F-, Cl-)-H2O system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.  相似文献   

10.
In the light of field investigation, microscopic study, X-ray phase analysis and mineral infrared spectral analysis, it is considered that laumontitization is of extensive occurrence in the Axi gold orefield. The development of laumontitization and its relationship to mineralization show that the laumontitization appeared mainly at the top of and in the periphery of orebodies, and occurred at the edge of the epithermal system or at the late stage of epithermal system evolution. Therefore, laumontitization can be used as an exploration indicator of epithermal gold deposits. The fluids responsible for laumontitization in the Axi gold orefield are similar to those producing hot spring-type gold deposits or those from modem geothermal fields. Epithermal mineralization of the Axi gold deposit was dated at Carboniferous, indicating that the West Tianshan of China is a region favorable to epithermal-type gold mineralization and preservation. Hence the West Tianshan of China is a target area for exploring epithermal gold deposits.  相似文献   

11.
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and con- trol the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Com- presso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R’-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming ma- terials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a nega- tive correlation between the gold abundance and susceptibility anisotropy (P) of the altered mylonite samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.  相似文献   

12.
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to  相似文献   

13.
Conventional geochemical exploration for gold deposits has not always been very satisfactory, especially for buried and blind ones. New considerations and methodology in sampling, analysis and interpretation have been developed in China during the past decade. Important considerations for unconventional gold exploration in this paper are that (1) gold is active in surface environments; (2) gold occurs not only as discrete grains, but also as ultrafine particles (submicron?to nanometer-sized particles of gold) and other complex forms; (3) regional low anomalies and superimposed anomalies over buried gold deposits are produced by ultrafine gold grains and other complex forms of gold. The methodology based on these considerations has been developed both in regional and in local geochemical exploration for gold. Examples of the preliminary application of these methods in two areas covered by transported overburden are given.  相似文献   

14.
The quartz vein-type gold deposits are widely hosted by the Neoproterozoic (Xiajiang Group) epimeta- morphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occurs in the second lithologieal member of the Pinglue Formation of the Xiajiang Group. Trace element geochemis- try of host rocks, quartz veins and arsenopyrite has revealed that ore-forming fluid was enriched in sulphophile ele- ments such as Au, Ag, As, Sb, Pb and Zn, and simultaneously concentrated some magmaphile elements such as W and Mo, which probably provides some evidence for multi-stage mineralization or overprinting of magmatic hydro- therm. Quartz veins and arsenopyrite were characterized by depletion in HFSE and enrichment in LREE. Hf/Sm, Nb/La and Th/La imply that the ore-forming fluid was probably a NaC1-H20 solution system enriched in more C1 than F; Th/U values reflect the strong reducibility of the ore-forming fluid, coincident with the sulfide assemblages. The values of Co/Ni reflect that magmatic fluids may have partly participated in the ore-forming process and Y/Ho values have proved that the ore-forming fluid was associated with metamorphism and exotic hydrotherm which has reformed former quartz veins during late mineralization. The concentrations of REE, Eu anomalies and Ce anomalies of this deposit display that ore-forming elements mainly were derived from host rocks and possibly from a mixed deep source, and the ore-forming fluid was mixed by dominant metamorphic fluid and minor other sources. The physical-chemical conditions of ore-forming fluid changed from the initial stage to the late stage. The metamorphic fluid is responsible for the mineralization. Therefore, the Zhewang gold deposit is classified as a quartz vein-type gold deposit which may have been reformed by magmatic fluids during the late stage.  相似文献   

15.
The Dongshengmiao Pb-Zn deposit located in the Mesoproterozoic aulacogen in a passive continental margin in the north- west margin of the North-China Craton is widely considered to be a untypical SEDEX deposit.Recently,new types of mineralization such as chalcopyrite veins and re-crystallized sphalerite ores with visible hydrothermal alteration have been found in the deposit at depth.In this paper we report the decrepitation temperatures of fluid inclusions in chalcopyrite,sphalerite and quartz from these new types of ores.The decrepitation temperatures of fluid inclusions in chalcopyrite(4 samples),sphalerite(2 samples)and quartz(5 samples)are 303~456℃,97~497℃,146~350℃and 350~556℃,respectively.The decrepitation temperatures of fluid inclusions in the vein-type chalcopyrite are similar to the decrepitation temperatures of fluid inclusions in chalcopyrite from the Hercynian Oubulage porphyry Cu-Au deposit(313~514℃)and the Chehugou porphyry Cu-Mo deposit(277~485℃),supporting our interpretation that the Dongshengmiao deposit was overprinted by magmatic hydrothermal mineralization.The decrepitation temperatures of fluid inclusions in re-crystallized sphalerite from the Dongshengmiao deposit are characterized by two peaks,97~358℃and 358~497℃.The decrepitation temperatures of fluid inclusions in quartz in ehalcopyrite veins from the Dongshengmiao deposit are also characterized by two peaks,146~350℃and 350~556℃.The lower and higher temperature peaks in both cases are considered to represent two separate mineralization events,original SEDEX mineralization and magmatic hydrothermal overprinting,respectively.The higher decrepitation temperatures of fluid inclusions in quartz and sphalerite from the Dongshengmiao deposit are similar to the decrepitation temperatures(340~526℃)of fluid inclusions in sphalerite from the Baiyinnuoer skarn-type Pb-Zn deposit in the region. Replacement of pyrite by sphalerite and overgrowth of chalcopyrite on pyrite in the Dongshengmiao support our interpretation that the original SEDEX mineralization was overprinted by magmatic hydrothermal activity in the deposit.Our results suggest that there may be separate porphyry and skarn-type deposits related to Hercynian magmatism and associated hydrothermal activities in the Langshan area, which are potential exploration targets in the future.  相似文献   

16.
In order to study the characteristics of sea-floor exhalative sedimentary and magmatic hydrothermal superimposition on the Bainiuchang polymetallic deposit, the REE compositions of the granites, host-rocks and ores have been systematically analyzed by ICP-MS. As viewed from their REE compositions, the granites show obvious negative Eu anomalies and weak negative Ce anomalies. According to their REE characteristics, the host-rocks were derived partly from sea-floor exhalative sediments. In terms of their REE compositions, the ores can be divided into two groups: one group, of which the samples were collected from the Baiyang segment relatively far away from the Bozhushan granite batholith, possesses positive Eu anomalies or no Eu anomaly and negative Ce anomalies, indicating that ore-forming hydrothermal fluid was relatively reductive and its temperature was higher than 250 ℃. Furthermore, the coinstantaneous presence of positive Eu anomalies and negative Ce anomalies indicate that the convective mixing of a little amount of seawater with hydrothermal fluid had happened while ores were precipitated on ancient sea floor. The other group, of which the samples were mainly collected from the Chuanxindong and Duimenshan segments near the Bozhushan granite batholith, has similar chondrite-monalized REE distribution patterns to those of the magmatic rocks. But as a whole, the REE characteristics of both groups change gradually starting from the Bozhushan granite batholith. Based on the REE characteristics of the granites, host-rocks and ores, it is suggested that the ore-forming metals seem to have come from several different sources.  相似文献   

17.
The expert system for statistical prediction of mineral deposits on middle and large scales takes the system of scientific exploration theories, criteria and methods proposed by Professor Zhao Pengda as the field expert knowledge. At present the developed system focuses on two aspects: synthetic exploration and quantitative exploration. Among the three basic theories for the prediction of deposits, it highlights the applications of seeking anomaly theory. This system is characteristic in the determination of geological background, the study of geological anomalies and the delineation of geological background, the study of geological anomalies and the delineation of mineralization anomalies. The system combines closely the knowledge base, method base and database ,integrates the input and output information of multi-sources and multi-variables, data , graphs and imagine processing system and inquiring system as a whole . So the system can meet in general all kinds of demands in statistical prediction of m  相似文献   

18.
The Hemlo mineralization is enigmatic compared to general Archean lode gold deposits based on the fact that is characterized by an exotic mineralogy containing elements such as As,Hg,Sb,Ba,V and Mo.The genetic concepts range from syngenetc to epigenetic types of mineralization.This reconnaissance study was designed to examine the relationshp of Hg-As minerals with respect of fluid inclusions in the Williams mine(formerly known as the Page Williams mine)covering the A and C ore zones.  相似文献   

19.
The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt(LYRB), contains 35 tons of Au at an average grade of ~1.7 g/t. It is a porphyry ‘Au-only' deposit, as revealed by current exploration in the depths, mostly above-400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141–140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125–120 Ma, coeval with the regional Atype granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.  相似文献   

20.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号