首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The analysis of oxygen isotope ratios (δ18O) in biogenic silica (e.g. diatoms, sponge spicules, phytoliths) is an increasingly utilised palaeoclimatic proxy for lakes and oceans, providing an alternative to carbonate δ18O. Currently, the problems associated with the cleaning and extraction of pure diatom silica, especially from lake sediments, may compromise the precision associated with δ18Odiatom records. This is because, despite improvements in cleaning techniques, it is still difficult to remove silica-containing contaminants (e.g. tephra, silts and clays) from biogenic silica. Where it has proved difficult to remove all the silica bearing contaminants from a sample, mass balance calculations involving point counting have been used, but these are inherently inaccurate as they only consider the surface area of the contaminant, rather than volume. The new method described here assesses the volume of contamination in each sample of biogenic silica by using major and trace element geochemistry, allowing the δ18O of the contamination to be removed from the biogenic silica δ18O value by linear mass balance. In this case, diatom silica was contaminated with tephra, however the method should also be applicable to other contaminants such as silts and clays.  相似文献   

2.
Previous studies have shown that moisture availability in the central highlands of Mexico during the last 3000 years has been highly variable, but evidence remains ambiguous since the climatic signal is partially masked by that of human activity. Here we use two isotope systems to provide evidence for environmental change in Laguna Zacapu, Michoacán covering this time period. Carbon isotope ratios of organic material suggest that there have been fluctuations in the carbon pool related to plant productivity, possibly as a result of changes in the abundance of aquatic plants around the lake margins. The drainage basin and lake have been managed intensively during the 20th century. Lake level apparently fell during the early part of the century, but has been artificially controlled since the 1950s. The oxygen isotope ratios from diatom silica should provide the more unambiguous climate signal, although we show that the interpretation of the diatom oxygen isotope record is far from straight forward. Zacapu is a spring-fed, non-evaporating system and changes in δ18Odiatom are likely to be a function of changes in δ18O of precipitation, due to either temperature and salinity variation in the Gulf of Mexico (associated with changes in the Bond cycles from the North Atlantic or the Loop current from the Carribean) and/or changing moisture contributions from different air masses (Gulf of Mexico vs. Pacific). Changes in the Gulf of Mexico are possibly at a resolution comparable to the periodicity we see in the δ18Odiatom record, although without better dating the comparison is speculative.  相似文献   

3.
There is increasing interest in the 18O/16O ratio of diatom silica, particularly for lakes where carbonates are absent. Here we compare the 18O/16O ratios preserved in diatom silica and authigenic calcite from an open, spring-fed, freshwater lake core from Turkey which spans marine oxygen isotope stage 3. The two sets of isotope data show contrasting trends in spite of their mutual dependence on the water 18O/16O ratio and lake-water temperature. The most likely explanation for this divergence is difference in seasonality of biological productivity mediated by the strongly continental climate of the Anatolian plateau. Diatom silica and authigenic calcite are precipitated from solutes in the lake-water at different times of the year. Diatom productivity follows a well-defined seasonal cycle, peaking first and most importantly in the spring and then in the autumn. The precipitation of calcite follows productivity by all forms of photosynthetic organisms that deplete CO2 but in most lakes this occurs during the summer months. The 18Ocalcite curve shows mean summer temperature maxima at ca. 30–35 and ca. 58 ka BP while the intervening data represent a period of relatively cool summers. The 18Odiatom curve shows bipolar results (15–20 and 29–33), which suggests that at least two discrete sources or processes contributed to the oxygen composition of the diatoms but probably involved a dilution mechanism to shift the isotopic values. The most likely source of depleted water is from snow entering the lake during the spring thaw. We infer that many authigenic calcite curves from regions with markedly seasonal climates may be temporally limited to a few summer months and that diatom silica provides complementary data on seasonally-specific water isotopic composition rather than a substitute for analyses based on carbonate.  相似文献   

4.
Physicochemical, mineralogical, and geochemical characteristics of 279 highly calcareous lacustrine sediment samples obtained from a 30 m drilling core in the western part of the Great Konya Basin, Turkey were studied. The sediments have a predominance of silt and clay fractions with a median diameter of 3–5 μm. Vertical changes of the amounts of water soluble components, gypsum, carbonates, and non-salt minerals such as quartz, feldspars, and layer silicates in the sediments suggest that there were climatic changes in the Konya Basin. The dominant clay mineral is smectite followed by kaolinite, illite, and palygorskite. The oxygen isotopic (δ18O) ratios of six quartz samples from the Konya sediments, a terra rossa soil beside Lake Bey ehir gölü and paleosols at the foot of Mt. Erciyes Da ranged from +18.1 to +20.6‰. The dominant clay minerals and δ18O ratios suggest that part of quartz and coexisting layer silicates is of long-range transported and/or local aeolian dust origin from arid and semi-arid regions such as North Africa, Israel, and the surroundings. The relatively high deposition rate might be due to aeolian dust input and/or the sediment input introduced by the rivers such as the Çar amba river from the Toros (Taurus) mountains. The vertical distributions of electro-conductivity, amounts of water soluble and non-salt components, and the gypsum content of the sediments suggest that gypsum-rich layers were formed under shallow, saline waters, possibly associated with warm to hot and dry environments such as the Last Interglacial epoch and the Early Holocene. The sediments characterized by relatively high amounts of non-salt sediments, in which gypsum did not accumulate, could be deeper water phases formed under the cold and/or wet environments such as the Glacial epochs.  相似文献   

5.
Surface sediments from 68 small lakes in the Alps and 9 well-dated sediment core samples that cover a gradient of total phosphorus (TP) concentrations of 6 to 520 g TP l-1 were studied for diatom, chrysophyte cyst, cladocera, and chironomid assemblages. Inference models for mean circulation log10 TP were developed for diatoms, chironomids, and benthic cladocera using weighted-averaging partial least squares. After screening for outliers, the final transfer functions have coefficients of determination (r2, as assessed by cross-validation, of 0.79 (diatoms), 0.68 (chironomids), and 0.49 (benthic cladocera). Planktonic cladocera and chrysophytes show very weak relationships to TP and no TP inference models were developed for these biota. Diatoms showed the best relationship with TP, whereas the other biota all have large secondary gradients, suggesting that variables other than TP have a strong influence on their composition and abundance. Comparison with other diatom – TP inference models shows that our model has high predictive power and a low root mean squared error of prediction, as assessed by cross-validation.  相似文献   

6.
The recent environmental history of Lake Lappajärvi in western Finland (63°00 N, 23°30 E, area 149 km2), a humic, brown water lake with an average phosphorus content of ca. 20 g l–1, was studied from short core sediment samples taken from the two main basins of the lake. Based on the stratigraphy of diatoms and chironomids and the sediment quality it was possible to distinguish four developmental stages during the past century: (1) a pre-industrial stage covering the time up to about 1935; (2) a stage of increasing nutrient loading (ca. 1936–1960); (3) a stage of pronounced erosion from lake level regulation and extensive ditching of the catchment area (ca. 1960–1970); and (4) a meso-eutrophic stage from ca. 1970 onwards.Acidophilous Aulacoseira distans coll. and other species typical of dystrophic, nutrient-poor lakes characterized the diatom assemblages during the first stage, and the profundal zoobenthic assemblages, characterized by Heterotrissocladius subpilosus and Micropsectra, indicated good hypolimnetic oxygen conditions and a low sedimentation of organic matter (approx. less than 50 g m–2 a–1). The increased loading rapidly led to changes both in diatoms and chironomids (e.g., to an early extinction of H. subpilosus in the 1950s). The process finally led to eutrophication with a successive proliferation of diatom species such as Asterionella formosa followed by Aulacoseira ambigua, Fragilaria crotonensis, and finally Melosira varians. The relative proportion of alkaliphilous species reached a maximum in the final stage and the original profundal chironomid fauna was replaced by Chironomus anthracinus gr. and C. plumosus which are typical of profundal areas suffering from temporal oxygen deficit. It is notable that the considerable decrease in waste water loading from the point sources (80–86% ) during the past two decades has not led to a recovery in the lake. This highlights the importance of diffuse loading from agriculture, forestry and other human activities even to this comparatively large lake.  相似文献   

7.
We studied diatom taxonomic composition and the presence of morphological alterations (size and deformations) along a sediment core collected in Lac Dufault, Abitibi, whose watershed has a long history of mining pollution presently undergoing mitigation. According to sediment dating with 210Pb and metal profiles along the core, we could identify four periods in the contamination history of the lake, which were characterized by different diatoms. Tabellaria flocculosa was dominant in the pre-mining period but was drastically reduced at the onset of pollution when Fragilaria cf. tenera became important. This diatom, together with other Fragilaria species and cysts of Chaetoceros muelleri, typified the transition period in which Cu reached its maximum value and other metals started to increase. During the period of maximum contamination with Zn, Cd, and Fe accompanied by acid mine drainage, Achnanthes minutissima and Brachysira vitrea were dominant. These taxa started to wane in the most recent sediments representing a partial chemical recovery. Asterionella formosa, which almost vanished at mining onset, reappeared with high abundance in these superficial sections. Beside these taxonomical shifts, we observed during the contamination period significant reduction in valve length together with increased percentages of valve deformations. Because available data on water chemistry and a diatom-based pH reconstruction suggest that Lac Dufault escaped severe acidification, diatom patterns observed in the core can be mostly ascribed to metal contamination. Individual diatom abundance and valve length had strong statistical relationships with the different metals identified in the core. Diatom changes both taxonomic and morphological can be excellent specific indicator of metal contamination and early recovery.  相似文献   

8.
Recent environmental change research in Lake Baikal is introduced together with an overview of several interrelated papers published concurrently in this issue of Journal of Paleolimnology. Five themes are tackled by analysis of recent Baikal sediment cores, dating, geochemistry, particulate pollutants, magnetism and diatoms. The concurrent papers focus on the first four themes in some detail and summary results of diatom analysis (from Mackay et al., 1998) are given here. Taken together these studies provide a time-space framework for recent environmental change in Lake Baikal not previously available.There are significant shifts in species composition of the endemic planktonic diatom assemblages in uppermost sediments collected from throughout the lake. However, these changes usually precede the sediment record of low level but widespread contamination by industrial products. The most clear sign of industrial contamination is the presence of particles from fossil fuel combustion in sediment post dating the 1930s.Although evidence for widespread biostratigraphic changes by pollution is lacking, radionuclide, diatom, lithostratigraphic and magnetic stratigraphies indicate two main features, (i) it is possible to make stratigraphic correlations within and between basins using recent sediment cores, (ii) that turbidite deposits, from several to tens of cm thick, are frequently encountered in recent sediments.Turbidite deposits occur in 210Pb dated and pre-210Pb sediment core sections and are undoubtedly a major macro-disturbance feature in many deep water locations in Lake Baikal. If profiles are to be used as direct proxy records of climate variability, then screening of cores for turbidites is a pre-requisite for quality assurance in future paleoenvironmental studies.On-going international research including Swiss, Russian and British joint paleoenvironmental studies on the distribution and biological formation of recent sediments will hopefully lead to better interpretation of Holocene and pre-Holocene sediment records in Lake Baikal.  相似文献   

9.
A paleoenvironmental perspective of temperature change is paramount to understanding the significance of recent warming in the Arctic. Late Quaternary sediments from many arctic lakes provide environmental archives with decadal resolution, but reconstructions are hampered by the relative insensitivity of many traditional proxies to temperature. Here, we show that the δ18O of head capsules of chironomid larvae are equilibrated with the δ18O of lakewaters in which they live. In suitable lakes, lakewater δ18O is controlled by the δ18O of local precipitation, which is strongly correlated to mean annual air temperature (MAT). From this correlation, chironomid δ18O can be used to examine past changes in MAT. We illustrate the potential of this novel approach to paleothermometry with examples from two arctic lakes that reveal strong regional paleoclimatic gradients in the early Holocene.  相似文献   

10.
This study tests the hypothesis that Fourier-transform infrared spectroscopy (FTIRS) of lake sediments can be used to infer past changes in tree-line position and total organic carbon (TOC) content of lake water. A training set of 100 lakes from northern Sweden spanning a broad altitudinal and TOC gradient from 0.7 to 14.9 mg/l was used to assess whether vegetation zones and TOC can be modelled from FTIR spectra of surface sediments (0–1 cm) using principal component analysis (PCA) and partial least squares (PLS) regression. Preliminary results show that FTIRS of lake sediments can be used to reconstruct past changes in tree line and the TOC content of lake water, which is hardly surprising since FTIRS registers the properties of organic and minerogenic material derived from the water mass and the drainage area. The FTIRS model for TOC gives a root mean squared error (RMSECV) of calibration of 1.4 mg/l (10% of the gradient) assessed by internal cross-validation (CV) yielding an Rcv2 of 0.64. This should be compared with a near-infrared spectroscopy (NIRS) and diatom transfer function for TOC from the same set of lakes, which have a Rcv2 of 0.61 and 0.31, and RMSECV of 1.6 and 2.3 mg/l, respectively. The FTIRS-TOC model was applied to a Holocene sediment core from a tree-line lake and the results show similar trends as inferences from NIRS and pollen from the same core. Overall, the results indicate that changes in FTIR spectra from lake sediments reflect differences in catchment vegetation and TOC, and that FTIRS-models based on surface-sediment samples can be applied to sediment cores for retrospective analysis.  相似文献   

11.
To quantify the relationship between diatom species assemblages and the water chemistry of southeast Australian estuaries and coastal lakes, a new dataset of 81 modern diatom samples and water chemistry data was created. Three hundred and ninety-nine species from 53 genera were identified in 36 samples from 32 coastal water bodies in eastern Tasmania and 45 samples from 13 coastal water bodies in southern Victoria. Multivariate statistical analyses revealed that the sampling sites were primarily distributed along salinity and nutrient gradients, and that salinity, nitrate + nitrite, phosphate and turbidity explained independent portions of variance in the diatom data. Species salinity optima and tolerances were determined and a diatom-salinity inference model (WAinv r 2 = 0.72, r 2jack = 0.58, RMSEP = 0.09 log ppt) was developed. This new information on diatom species’ salinity preferences provides a useful tool for quantitatively reconstructing salinity changes over time from diatom microfossils preserved in the sediments of a range of estuaries and coastal lakes in southeast Australia. This is valuable for studies investigating long-term human impacts and climate change in the region.  相似文献   

12.
We studied sediment cores from four Florida (USA) lakes that have received groundwater hydrologic supplements (augmentation) for >30 years to maintain lake stage. Top samples (0–4 cm) from sediment cores taken in Lakes Charles, Saddleback, Little Hobbs, and Crystal had 226Ra activities of 44.9, 17.5, 7.6, and 8.5 dpm g−1, respectively, about an order of magnitude greater than values in deeper, older deposits. The surface sample from Lake Charles yielded the highest 226Ra activity yet reported from a Florida lake core. Several lines of evidence suggest that groundwater augmentation is responsible for the high 226Ra activities in recent sediments: (1) 226Ra activity in cores increased recently, (2) the Charles, Crystal, and Saddleback cores display 226Ra/210Pb disequilibrium at several shallow depths, suggesting 226Ra entered the lakes in dissolved form, (3) cores show recent increases in Ca, which, like 226Ra, is abundant in augmentation groundwater, and (4) greater Sr concentrations are associated with higher 226Ra activities in recent Charles and Saddleback sediments. Sr concentrations in Eocene limestones of the deep Floridan Aquifer are high relative to Sr concentrations in surficial quartz sands around the lakes. Historical water quality inferences for the lakes were based on diatom assemblages in sediments. Recent alkalization in Lakes Charles, Saddleback, Little Hobbs, and Crystal was inferred from weighted-averaging calibration (WACALIB). The lakes also show recent trophic state increases based on WACALIB-derived estimates for limnetic total P. Although residential and agricultural sources might contribute to increased P loading, P in augmentation waters probably has had significant influence on eutrophication. Dystrophic diatoms were abundant in the early history of Lakes Saddleback, Little Hobbs, and Crystal, which suggests that these lakes contained more tannic waters during the past than at present, perhaps as a consequence of greater inflows from surrounding wetlands. Ionic content of lake waters increased, as indicated by diatom autecological analysis. Recent geochemical and biological changes detected in cores from these lakes probably are a result of deliberate groundwater augmentation, although inputs of groundwater pumped for agricultural and residential development in the watersheds also might have contributed to limnological changes.  相似文献   

13.
Prior to environmental legislation in the 1980s, anthropogenic waste in Antarctica was often deposited into landfill sites or into the sea. This resulted in metal contamination in terrestrial and near-shore marine environments. In this study, we assess the feasibility of using both past and present diatom assemblages to reconstruct and monitor past and future metal contamination. Our dataset included the analyses of both surface sediment samples and sediment cores from a contaminated site near Casey Station, Antarctica. Redundancy analyses indicated a strong relationship between metal concentrations and the composition of diatom communities. Within the surface sediment samples, tin and lead individually explained 43% of the variation observed in the diatom data; copper and iron explained 42% of this variation. In the sediment cores, tin and lead individually explained 53% of the variation in diatom community composition. In the same samples copper explained 47% of this variation, with iron explaining 46% of the observed variation. Once one metal had been selected, incorporating further metal data into the analyses added little extra information. Modern analog technique (MAT) analyses showed a strong correlation between actual and predicted values within one dataset (R2: Cu 0.75; Pb 0.86; Sn 0.89; p<0.05 for each). MAT reconstructions of metal concentrations closely followed measured concentrations, with both high and low concentrations recorded. MAT analyses performed favorably when compared to predictive techniques based on multivariate linear regression and multilayer perceptron neural networks. This study demonstrates that the composition of benthic diatom communities is a good indicator of anthropogenic metal contamination, and may be useful in monitoring the success of environmental remediation strategies in Antarctica and elsewhere.  相似文献   

14.
The surface sediment diatom and chrysophyte assemblages from 33 Sudbury lakes were added to our published 72 lake data set to expand and refine the diatom and chrysophyte-based inference models that we had earlier developed for this region. Our calibration data set now includes 105 lakes, representing gradients for multiple environmental variables (e.g., lakewater pH, metals, and transparency). The revised models are based on the weighted averaging calibration and regression approach and include bootstrap error estimates. The pH model was the strongest (r2 boot = 0.75, RMSE boot = 0.50). The chrysophyte-inferred pH model (r2 boot = 0.79, RMSE boot = 0.48) that we developed was as robust as the diatom pH model. Diatom and chrysophyte inferred pH models were then applied to top (surface sediments representing current conditions) and bottom (generally from > 30 cm deep representing pre-industrial conditions) sediment diatom and chrysophyte assemblages of 19 Killarney area lakes near Sudbury. The top and bottom inferred pH results were compared to early-1970s measured pH data. These data suggest that, although many of the poorly buffered Killarney lakes had experienced acidification, marked pH recovery has occurred in many lakes within the last 25 years. Despite the stunning pH recovery, the present-day diatom and chrysophyte assemblages are significantly different from assemblages present during pre-industrial times. Our results suggest that biological recovery may require more time than chemical recovery. It is also likely that these lakes may never recover biologically because other anthropogenic stressors (e.g., climate warming and increased exposure to UV-B radiation) may now have greater influence on biological communities in Killarney/Sudbury area lakes than acidification.  相似文献   

15.
Biomonitoring past salinity changes in an athalassic subarctic lake   总被引:1,自引:0,他引:1  
A short sediment core was taken from a small saline lake located on an intermontane plateau in the central Yukon Territory, Canada. In July 1990, chemical analyses indicated that, although the lake was shallow (Zmax=1.1 m), it was also chemically stratified, with hyposaline (9.9 to 10.0 g L−1) surface waters and slightly mesosaline (22.0 g L−1) deeper waters. The surface water was dominated by Na+ and HCO 3 . To our knowledge, this is the northernmost athalassic saline lake yet recorded. Quantification of algal (diatom, chrysophyte, and pigment) and invertebrate (chironomid, ceratopogonid, andChaoborus) fossils at four stratigraphic levels indicated that the lake sediments preserved numerous biological indicators that could be used to infer recent lake development. Many of the taxa are found in other athalassic salt lakes. The most striking stratigraphic change was a remarkable drop in the species richness of diatoms and invertebrates in the recent sediments, which parallels the elimination of species characteristic of less saline conditions. Halophilous taxa dominate the most recent sediments, indicating the development of more saline conditions. At the same time, a significant shift in chrysophyte cyst composition was observed. Fossil carotenoids and chlorophylls indicated a decrease in total algal abundance in recent sediments, as green and blue-green algae replaced diatoms and chrysophytes. Together, these paleolimnological data suggest a recent shift to drier conditions or increased evaporation in the central Yukon Territory.  相似文献   

16.
This paper presents an improved method for the optical dating of Holocene sediments from a variety of geomorphic settings. We have measured the equivalent dose (De) in individual grains of quartz, using green laser light for optical stimulation, and have simulated the De distributions for multiple-grain ‘synthetic’ aliquots using the single-grain data. For 12 samples of known (independent) age, we show that application of a ‘minimum age model’ to the single-grain and ‘small’ (10-grain) aliquot De data provides the most accurate estimate of the burial dose for nine of the samples examined (3 aeolian, 5 fluvial, and 1 marine). The weighted mean De (as obtained using the ‘central age model’) gives rise to burial age overestimates of up to a factor of 10 for these nine samples, whether single grains, small aliquots, or ‘large’ (100-grain) aliquots are used. For the other three samples (two aeolian and one fluvial), application of either the minimum age model or the central age model to the single-grain, small aliquot, and large aliquot De data yields burial ages in accord with the independent age control. We infer that these three samples were well bleached at the time of deposition. These results show that heterogeneous bleaching of the optical dating signal is commonplace in nature, and that aeolian transport offers no guarantee that the sample will be well bleached at the time of deposition. We also show that grains sensitive to infrared (IR) stimulation can give rise to low De values, which will result in significant underestimation of the burial dose and, hence, of the age of deposition. We demonstrate that use of a modified single-aliquot regenerative-dose protocol incorporating IR stimulation prior to green light stimulation deals effectively with contamination by IR-sensitive grains. We conclude that application of the modified protocol to single grains or small aliquots of quartz, using the lowest De population to estimate the burial dose, is the best means of obtaining reliable ages for Holocene sediments from a wide range of depositional environments.  相似文献   

17.
The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2 jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2 jack = 0.61, RMSEP = 0.30) and TOC (R2 jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.  相似文献   

18.
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hoare, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake-wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4–16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (26–31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta). Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.  相似文献   

19.
As part of the international cooperative Baikal Drilling Project, siliceous microfossil assemblage succession was analyzed in two short ( 30-cm) sediment cores from Lake Baikal. One core was recovered from the north basin (Core 324, 55°15N, 109°30E), a second from between the central and southern basins (Core 316, 52°28N, 106°5E). The northern core had higher amounts of biogenic silica (40 g SiO2 per 100 g dry weight sediment) compared to the southern core, and increased deposition in the more recent sediments. Weight percent biogenic silica was lower in the southern core, ranging from approximately 20–30 g SiO2 per 100 g dry weight sediment throughout the entire core. Trends in absolute microfossil abundance mirror those of biogenic silica, with generally greater abundance in the northern core (86–275×106 microfossils g–1 dry sediment) compared to the southern core (94–163×106 microfossils g–1 dry sediment).Cluster analyses using relative abundance of the dominant diatom and chrysophyte taxa revealed four zones of microfossil succession in each core. Microfossil assemblage succession in the north basin may be reflecting shifts in nutrient supply and cycling driven by climatic changes. The most recent sediments in the northern basin (Zone 1,c. 1890's–1991 A.D.) were characterized by an increased abundance ofAulacoseira baicalensis andAulacoseira spore. Zone 3 (c. 1630's–1830's A.D.) was dominated by the endemicCyclotella spp. and reduced abundance of theAulacoseira spp. Zone 3 corresponds approximately to the Little Ice Age, a cooler climatic period. The microfossil assemblages between Zones 1 and 3 (Zone 2,c. 1830's–1890's A.D.) and below Zone 3 (Zone 4,c. 830's–1430's A.D.) are similar to one another suggesting they represent transitional intervals between warm and cold periods. Southern basin sediments record similar changes in the endemic taxa. However, the increased abundance of non-endemic planktonic taxa (e.g.Stephanodiscus binderanus, Synedra acus, Cyclostephanos dubius) during two periods in recent history (post World War II and late 1700's) suggests evidence for anthropogenic induced changes in southern Lake Baikal.  相似文献   

20.
Lake eutrophication is a problem in many areas of Ontario, although the history of nutrient enrichment is poorly documented. The aim of this study was to construct a diatom-based transfer function to infer past phosphorus levels in Ontario lakes using paleolimnological analyses. The relationship between diatom assemblages and limnological conditions was explored from a survey of diatoms preserved in the surface sediments of 64 Southern Ontario lakes, spanning a total phosphorus gradient of 0.004 to 0.054 mg L-1. Over 420 diatom taxa were identified, 98 of which were sufficiently common to be considered in statistical analyses. Canonical correspondence analysis (CCA) determined that pH, ammonium, aluminum, spring total phosphorus (TP), strontium, total nitrogen (TN), maximum depth (MaxZ), chlorophyll a (Chla) and mean depth were significant variables in explaining the variance in the diatom species data. The environmental optima of common diatom taxa for the limnologically important variables (TP, pH, TN, MaxZ, Chla) were calculated using weighted averaging (WA) regression and calibration techniques, and transfer functions were generated. The diatom inference model for spring TP provided a robust reconstructive relationship (r2 = 0.637; RMSE = 0.007 mg L-1; r2 boot = 0.466; RMSEboot = 0.010 mg L-1). Other variables, including pH (r2 = 0.702; RMSE = 0.208; r2 boot = 0.485; RMSEboot = 0.234), TN (r2 = 0.574; RMSE = 0.0899 mg L-1; r2 boot = 0.380; RMSEboot = 0.127 mg L-1) and MaxZ (r2 = 0.554; RMSE = 1.05 m; r2 boot = 0.380; RMSEboot = 1.490 m), were also strong, indicating that they may also be reconstructed from fossil diatom communities. This study shows that it is possible to reliably infer lakewater TP and other limnological variables in alkaline Southern Ontario lakes using the WA technique. This method has the potential to aid rehabilitation programs, as it can provide water quality managers with the means to estimate pre-enrichment phosphorus concentrations and an indication of the onset and development of nutrient enrichment in a lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号