首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   

2.
Structural equivalence between seagrass restoration sites and adjacent natural seagrass beds on the mid Texas coast was assessed six times between April 1995 and May 1997. Throw traps and corers were used for quantitative sampling. Restoration sites were 2.7 to 6.6 yr old when first sampled and 3.7 to 8.2 yr old when last sampled. There were few significant differences in water column, seagrass, or sediment characteristics, in fish and decapod (nekton) densities, or in nekton and benthos community compositions between restored and natural seagrass habitats at any time during the study period. Differences in densities of dominant benthic invertebrates were regularly observed, with greater densities of more taxa observed in natural seagrasses than in restored beds. Densities of Class Oligochaeta and the polychaetePrionospio heterobranchiata are proposed as potential indicators of structural equivalence in restored seagrasses. This study indicates that seagrass restorations in the vicinity of Corpus Christi, Texas, exhibit minimal quantitative differences in community structure (except for benthos) relative to adjacent natural seagrass beds after 3 to 5 yr.  相似文献   

3.
Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated light attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and light attenuation in both winter and summer begining in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a majorSyringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward toward Big Pine Key, indicating changes in the bottom cover from before the die-off. The southern and eastern sections of the Bay have not shown significant changes in water clarity or bottom albedo throughout the entire time period.  相似文献   

4.
The Florida Bay ecosystem has changed substantially in the past decade, and alterations in the seagrass communities have been particularly conspicuous. In 1987 large areas ofThalassia testudinum (turtlegrass) began dying rapidly in western Florida Bay. Although the rate has slowed considerably, die-off continues in many parts of the bay. Since 1991, seagrasses in Florida Bay have been subjected to decreased light availability due to widespread, persistent microalgal blooms and resuspended sediments. In light of these recent impacts, we determined the current status of Florida Bay seagrass communities. During the summer of 1994, seagrass species composition, shoot density, shoot morphometrics, and standing crop were measured at 107 stations. Seagrasses had been quantified at these same stations 10 yr earlier by Zieman et al. (1989).T. testudinum was the most widespread and abundant seagrass species in Florida Bay in both 1984 and 1994, and turtlegrass distribution changed little over the decade. On a baywide basis,T. testudinum density and biomass declined significantly between surveys; mean short-shoot density ofT. testudinum dropped by 22% and standing crop by 28% over the decade.T. testudinum decline was not homogeneous throughout Florida Bay; largest reductions in shoot density and biomass were located principally in the central and western bay. Percent loss ofT. testudinum standing crop in western Florida Bay in 1994 was considerably greater at the stations with the highest levels of standing crop in 1984 (126–215 g dry wt m−2) than at the stations with lower levels of biomass. While turtlegrass distribution remained consistent over time, both the distribution and abundance of two other seagrasses,Halodule wrightii andSyringodium filiforme, declined substantially between 1984 and 1994. Baywide,H. wrightii shoot density and standing crop declined by 92%, andS. filiforme density and standing crop declined by 93% and 88%, respectively, between surveys. Patterns of seagrass loss in Florida Bay between 1984 and 1994 suggest die-off and chronic light reductions were the most likely causes for decline. If die-off and persistent water-column turbidity continue in Florida Bay, the long-term future of seagrasses in the bay is uncertain.  相似文献   

5.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

6.
Innovative flume experiments were conducted in a recirculating straight flume. Zostera noltei meadows were sampled in their natural bed sediments in the field at contrasting stages of their seasonal growth. The aims of this study were: (i) to quantify the combined effects of leaf flexibility and development characteristics of Zostera noltei canopies on their interaction with hydrodynamics; and (ii) to quantify the role of Zostera noltei meadows in suspended sediment trapping and bed sediment resuspension related with changes in hydrodynamic forcing caused by the seasonal development of seagrasses. Velocity within the canopy was significantly damped. The attenuation in velocity ranged from 34 to 87% compared with bare sediments and was associated with a density threshold resulting from the flow‐induced canopy reconfiguration. The reduction in flow was higher in dense canopies at higher velocities than in less dense canopies, in which the reduction in flow was greater at low velocities. These contrasted results can be explained by competition between a rough‐wall boundary layer caused by the bed and a shear layer caused by the canopy. The velocity attenuation was associated with a two to three‐fold increase in bottom shear stress compared with unvegetated sediment. Despite the increase in near‐bed turbulence, protection of the sediment against erosion increased under a fully developed meadow, while sediment properties were found to be the main factor controlling erosion in a less developed meadow. Deposition fluxes were higher on the vegetated bed than on bare sediments, and these fluxes increased with leaf density. Fewer freshly deposited sediments were resuspended in vegetated beds, resulting in an increase in net sediment deposition with meadow growth. However, in the case of a very high leaf area index, sediment was mostly deposited on leaves, which facilitated subsequent resuspension and resulted in less efficient sediment trapping than in the less developed meadow.  相似文献   

7.
The effects of seagrass bed geometry on wave attenuation and suspended sediment transport were investigated using a modified Nearshore Community Model (NearCoM). The model was enhanced to account for cohesive sediment erosion and deposition, sediment transport, combined wave and current shear stresses, and seagrass effects on drag. Expressions for seagrass drag as a function of seagrass shoot density and canopy height were derived from published flume studies of model vegetation. The predicted reduction of volume flux for steady flow through a bed agreed reasonably well with a separate flume study. Predicted wave attenuation qualitatively captured seasonal patterns observed in the field: wave attenuation peaked during the flowering season and decreased as shoot density and canopy height decreased. Model scenarios with idealized bathymetries demonstrated that, when wave orbital velocities and the seagrass canopy interact, increasing seagrass bed width in the direction of wave propagation results in higher wave attenuation, and increasing incoming wave height results in higher relative wave attenuation. The model also predicted lower skin friction, reduced erosion rates, and higher bottom sediment accumulation within and behind the bed. Reduced erosion rates within seagrass beds have been reported, but reductions in stress behind the bed require further studies for verification. Model results suggest that the mechanism of sediment trapping by seagrass beds is more complex than reduced erosion rates alone; it also requires suspended sediment sources outside of the bed and horizontal transport into the bed.  相似文献   

8.
Studies of seagrass meadows have shown that the production of algal epiphytes attached to seagrass blades approaches 20% of the seagrass production and that epiphytes are more important as food for associated fauna than are the more refractory seagrass blades. Since epiphytes may compete with seagrasses for light and water column nutrients, excessive epiphytic fouling could have serious consequences for seagrass growth. We summarize much of the literature on epiphytegrazer relationships in seagrass meadows within the context of seagrass growth and production. We also provide insights from mathematical modeling simulations of these relationships for a Chesapeake BayZostera marina meadow. Finally we focus on future research needs for more completely understanding the influences that epiphyte grazers have on seagrass production.  相似文献   

9.
The Laguna Madre of South Texas is a shallow coastal lagoon whose dominant primary producers shifted from seagrasses to phytoplankton with the onset of the Texas brown tide, which persisted from 1990 through 1997. Acartia tonsa is the dominant component of the mesozooplankton and forms an important link in both the phytoplankton and detritus-based pelagic food webs. Stable carbon isotope ratios of A. tonsa, as well as the two major primary producers: phytoplankton (as particulate organic carbon) and seagrasses, were measured from March 1989 to October 1991. Zooplankton samples were collected at four locations in the Laguna Madre: two in shallow water (c. 1 m) over seagrass beds and two in slightly deeper water (c. 2–3 m) over a muddy bottom in a secondary bay without seagrasses. We found seasonal trends in the isotopic composition of A. tonsa collected within both habitats as well as distinct differences between the average {ie995-1} values of individuals collected in the two regions. Isotopic ratios of animals collected during the summer months were generally 4–8‰ enriched in 13C compared with those collected in the winter, at all stations. A. tonsa collected over seagrass beds were 2–5‰ more enriched in 13C than those collected over muddy bottoms. These observations suggest carbon derived from seagrasses can be an important source of nutrition for these copepods in summer, especially for copepods living over seagrass beds. The effects of the persistent brown tide decreased the contribution of seagrasses as a carbon source for A. tonsa during the summer of 1991. The pathway by which seagrass carbon enters the diet of A. tonsa is unclear, but the two pathways considered most likely are through copepods feeding on microzooplankton that have fed on bacteria nourished on seagrass carbon, or by copepods feeding directly on particles of seagrass detritus.  相似文献   

10.
It has been assumed that because seagrasses dominate macrophyte biomass in many estuaries they also dominate primary production. We tested this assumption by developing three carbon budgets to examine the contribution of autotrophic components to the total ecosystem net primary production (TENPP) of Lower Laguna Madre, Texas. The first budget coupled average photosynthetic parameters with average daily irradiance to calculate daily production. The second budget used average photosynthetic parameters and hourly in situ irradiance to estimate productivity. The third budget integrated temperature-adjusted photosynthetic parameters (using Q10=2) and hourly in situ irradiance to estimate productivity. For each budget TENPP was calculated by integrating production from each autotroph based on the producers’ areal distribution within the entire Lower Laguna Madre. All budgets indicated that macroalgae account for 33–42% of TENPP and seagrasses consistently accounted for about 33–38%. The contribution by phytoplankton was consistently about 15–20%, and the contribution from the benthic microalgae varied between 8% and 36% of TENPP, although this may have been underestimated due to our exclusion of the within bed microphytobenthos component. The water column over the seagrass beds was net heterotrophic and consequently was a carbon sink consuming between 5% and 22% of TENPP, TENPP ranged between 5.41×1010 and 2.53×1011 g C yr−1, depending on which budget was used. The simplest, most idealized budget predicted the highest TENPP, while the more realistic budgets predicted lower values. Annual production rates estimated using the third budget forHalodule urightii andThalassia testudinum compare well with field data. Macroalgae and microalgae contribute 50–60% of TENPP, and seagrass may be more important as three-dimensional habitat (i.e., structure) than as a source of organic carbon to the water column in Lower Laguna Madre.  相似文献   

11.
This study investigated macroinvertebrate community composition in seagrass beds at a range of spatial scales, with an emphasis on the transition between vegetated and unvegetated sediment. At four intertidal sites in three New Zealand estuaries (Whangamata, Wharekawa, and Whangapoua Harbours), a large continuous bed of seagrass (Zostera capricorni) was selected with adjacent unvegetated sediment. Macroinvertebrate community composition and biomass, as well as sediment characteristics, were determined at sampling locations 1 and 50 m inside seagrass beds, and 1, 10, and 50 m outside seagrass beds. Analysis of univariate measures of community composition (total abundance, number of species, and diversity) and total biomass indicated significant differences among sites and sampling locations, but contrary to many previous studies these measures were not higher inside than outside the seagrass beds. Multivariate analysis indicated that sites with high seagrass biomass supported a similar community composition. The remaining sampling locations were clustered by site, but there were also significant differences in community composition among sampling locations within a site. There were distinctive communities at the edge of seagrass beds at sites with high seagrass biomass, and evidence that the effects of seagrass beds may extend into the unvegetated sediment. At the low seagrass biomass site there was no evidence of any edge effects, although community composition differed inside and outside the bed. Differences in community composition were driven primarily by small changes in the relative abundance of the dominant taxa. At high seagrass biomass sites the absence of deep-burrowing polychaetes and low numbers of bivalves suggests that one possible mechanism underlying the observed variation in community composition was inhibition by the dense root-rhizome mat. The results of this study emphasize the need to consider the linkages between habitats in heterogeneous estuarine landscapes and how those linkages vary among sites, if the structure and functioning of macroinvertebrate communities in seagrass habitats are to be understood.  相似文献   

12.
A broad-scale survey of seagrass species composition and distribution along Florida's central Gulf Coast (known as the Big Bend region) was conducted in the summer of 2000 to address growing concerns over the potential effects of increased nutrient loading from adjacent coastal rivers. Iverson and Bittaker (1986) originally surveyed seagrass distribution in this region between 1974–1980. We revisited 188 stations from the original survey, recording the presence or absence of all seagrass species. Although factors such as accuracy of station relocation, differences in sampling effort among studies, and length of time between surveys preclude statistical comparisons, several interesting patterns emerged. While the total number of stations occupied by the three most common seagrass species,Thalassia testudinum, Syringodium filiforme, andHalodule wrightii, was similar between the two time periods, we observed a change in the number of records of each species as well as changes in distribution with depth.T. testudinum andHalophila engelmanni occurrence declined in the deepest areas of the region, while the number of stations occupied byS. filiforme andH. wrightii increased in nearby areas. We observed several localized areas of seagrass loss, frequently associated with the mouths of coastal rivers. These results suggest that increased nutrient loading to coastal rivers that discharge into the Big Bend area may be affecting seagrasses by increasing phytoplankton abundance in the water column, thus changing water clarity characteristics of the region.  相似文献   

13.
A hypothesis was tested to determine if a relationship exists between rates of submarine groundwater discharge and the distribution of seagrass beds in the coastal, nearshore northeastern Gulf of Mexico. As determined by nonparametric statistics, four of seven seagrass beds in the northeastern Gulf of Mexico had significantly greater submarine groundwater discharge compared with adjacent sandy areas, but the remainder exhibited the opposite relationship. We were thus unable to verify if a relationship exists between submarine groundwater discharge and the distribution of seagrass beds in the nearshore sites selected. A second objective of this study was to determine the amount of nitrogen and phosphorus delivered to nearshore areas by submarine groundwater discharge. We considered new nutrient inputs to be delivered to surface waters by the upward flux of fresh water. This upward flux of water encounters saline porewaters in the surficial sediments and these porewaters contain recycled nutrients; actual nutrient flux from the sediment to overlying waters includes both new and recycled nutrients. New inputs of nitrogen to overlying surface waters for one 10-km section of coastline, calculated by multiplying groundwater nutrient concentrations from freshwater wells by measured seepage rates, were on the order of 1,100±190 mol N d−1. New and recycled nitrogen fluxes, calculated by multiplying surficial porewater concentrations by measured seepage rates, yielded fluxes of 3,600 ±1,000 mol N d−1. Soluble reactive phosphate values were 150±40 mol P d−1 using freshwater well concentrations and 130±3.0 mol P d−1 using porewater concentrations. These values are comparable to the average nutrient delivery of a small, local river.  相似文献   

14.
Water column optical properties of Greater Florida Bay were investigated in the context of their impacts on seagrass distribution. Scattering played an important role in light attenuation throughout the shallow water system. The northwest region was characterized by an absence of seagrasses and the highest scattering by particles, mostly from resuspended carbonate sediments. Higher seagrass densities were observed in the open waters just north of the Florida Keys, where absorption coefficients were dominated by colored dissolved organic material and scattering was lower than in the northwest region. Patchy dense seagrass meadows were observed in the clear waters south of the Keys where scattering and absorption were low and contributed equally to light attenuation. In general, seagrasses were observed in areas where >7.5% of surface irradiance reached the plants and where optical properties were not dominated by scattering. Although the prevention of eutrophication and nuisance algal blooms may be necessary for preserving seagrass meadows in this system, our observations and model calculations indicate that nutrient control alone may be insufficient to permit seagrass recolonization if optical properties are dominated by particulate scattering from resuspended sediments.  相似文献   

15.
Seasonal phosphate (Pi) uptake kinetics were determined using chambers encompassing the water column, sediment and the entire system (water column + sediment + seagrass/epiphyte) in Florida Bay (FB) during 2003–2006 and on the Little Bahama Bank (LBB) during a cruise June, 2004. Pi uptake was a linear function of concentration at low Pi levels (< 2 μmo11-1). Applying the Pi system rate constant (Sp) from western (177 ±50 x 10-6 m s-1) and eastern (272 ±66 x 10-6 m s-1) bay sites, and using Pi measured during the study (0.02 to 0.177 μmol Pi 1-1), we calculated a Pi uptake rate of 0.30 to 2.62 mmol Pi m-2 d-1 for western and 0.47 to 4.16 mmol Pi m-2 d-1 for eastern bay sites which includes phytoplankton uptake (0.455 m height). During non-bloom conditions, phytoplankton dominated Pi uptake in the east (46%) and both phytoplankton and the seagrass-epiphyte consortium in the west (32 and 52%, respectively), with a smaller contribution by the sediment (15–20%). On LBB interior sites, the water column always dominated (≽94%) Pi uptake with a higher Sp (573-881 x 10-6 m s-1) than FB. During cyanobacterial blooms in FB (chla 17 μg 1-1), the water column dominated Pi uptake (100%) and Sp was the highest (>2,800 x 10-6 m s-1) measured. Phytoplankton accounted for 88% of this sequestered Pi with only 12% in the acid extractable fraction, likely as calcium bound and/or adsorbed P, and only 1% attributable to small heterotrophs. When chl α levels declined (2 μg I-1) Pi uptake was still dominated by phytoplankton (77%), the acid extractable pool increased (18%) and the heterotrophic community became more important (22%). In carbonate-dominated seagrass systems, Pi is primarily taken up by the water column biota and is subsequently remineralized/hydrolyzed in the water column or settles to the benthos where it becomes available to benthic primary producers.  相似文献   

16.
In addition to nutrient and light availability, sedimentary biogeochemical processes can play an essential role in seagrass productivity. Previous investigations of the interactions between seagrasses and their underlying sediments have failed to clearly identify the spatio-temporal variability of the major geochemical parameters involved. Dissolved and solid phase chemical parameters in eelgrass vegetated and nearby non-vegetated sediments were investigated in this study to determine their vertical, lateral, and temporal distributions. Solid-state microelectrodes were used to investigate dissolved O2, ΣH2S, Fe2+, and Mn2+ on mm space scales. In this study, spatial heterogeneity was assessed and diurnal “ventilation” by seagrass productivity (i.e., the translocation of photosynthetically produced oxygen to the anoxic sedimentary environment) was not observed probably because benthic infaunal activity (bioturabation and bioirrigation) and microzones established by microbial processes led to highly heterogeneous sediment geochemistry where temporal variability was obscured by small-scale spatial variability. Non-vegetated sediments were less geochemically variable laterally than vegetated sediments, however, in some cases, they had similar vertical variability, possibly because they had been vegetated at an earlier time. This study demonstrates that in vegetated sediments where there is also substantial benthic macrofaunal activity it is difficult to separate the impacts of the two types of biota on sediment geochemistry and their spatial patterns, and it also raises the question of the applicability of traditional one-dimensional diagenetic models for such spatially–temporally complex sediments.  相似文献   

17.
Subsidence and erosion of intertidal salt marsh at Galveston Island State Park, Texas, created new areas of subtidal habitat that were colonized by seagrasses begining in 1999. We quantified and compared habitat characteristics and nekton densities in monospecific beds of stargrassHalophila engelmanni and shoalgrassHalodule wrightii as well as adjacent nonvegetated substrates. We collected 10 replicates per habitat type during April, July, October, and December 2001. Most habitat characteristics varied with season. Water temperature, salinity, and dissolved oxygen were similar among habitat types. Turbidity and depth were greatest inH. engelmanni beds and least inH. wrightii beds.H. engelmanni exhibited shorter leaves and higher shoot density and biomass core−1 thanH. wrightii. Densities of almost all dominant species of nekton (fishes and decapods) were seasonally variable, all were higher in seagrass habitats than in nonvegetated habitats, and most were higher in one seagrass species than the other. Naked gobyGobiosoma bosc, code gobyGobiosoma robustum, bigclaw snapping shrimpAlpheus heterochaelis, and blue crabCallinectes sapidus, were most abundant inH. engelmanni. Brown shrimpFarfantepenaeus aztecus, brackish grass shrimpPalaemonetes intermedius, and daggerblade grass shrimpPalaemonetes pugio were most abundant inH. wrightii. PinfishLagodon rhomboides and pink shrimFarfantepenaeus duorarum were equally abundant in either seagrass. Most dominant nekton varied in size by month, but only two (L. rhomboides andC. sapidus) exhibited habitat-related differences in size. Nekton densities in these new seagrass habitats equaled or exceeded densities associated with historical and current intertidal smooth cordgrassSpartina alterniflora marsh. Continued seagrass expansion and persistence should ensure ecosystem productivity in spite of habitat change.  相似文献   

18.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

19.
Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.  相似文献   

20.
Continuous, long-term studies of coastal grassbed assemblages in the N.E. Gulf of Mexico indicate complex relationships between physical controlling factors and biological response. Such seagrass systems are physically unstable over short periods. Seasonal ranges of temperature, salinity, and natural water quality conditions are considerable with periodic, recurrent “catastrophic” events such as floods and cold winters. These factors control the distribution and productivity of the seagrasses and algae which constitute the habitat and organic substrate for diverse assemblages of organisms. In addition, the benthic plants mediate predator-prey relationships and competitive interactions. Despite the physical instability, timed sequences of distinct ontogenetic feeding populations are generally stable from year to year as are other population and community characteristics. Thus, physical processes determine overall habitat conditions and productivity cycles whereas biological processes such as predation and competition define specific community relationships. However, seemingly minor changes in the physical environment due to anthropogenous activities can lead to major reorganization of the biological system; the observed biological stability of the seagrass beds can be ephemeral if important habitat features are altered in a way that exceeds the adaptive response of the system. Concepts are discussed which relate observed sequences of ontogenetic feeding units to food web patterns and geographic differences of population-niche relationships from one estuary to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号