首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bridge health monitoring system is presented based on vibration measurements collected from a network of acceleration sensors. Sophisticated structural identification methods, combining information from the sensor network with the theoretical information built into a finite element model for simulating bridge behavior, are incorporated into the system in order to monitor structural condition, track structural changes and identify the location, type and extent of damage. This work starts with a brief overview of the modal and model identification algorithms and software incorporated into the monitoring system and then presents details on a Bayesian inference framework for the identification of the location and the severity of damage using measured modal characteristics. The methodology for damage detection combines the information contained in a set of measurement modal data with the information provided by a family of competitive, parameterized, finite element model classes simulating plausible damage scenarios in the structure. The effectiveness of the damage detection algorithm is demonstrated and validated using simulated modal data from an instrumented R/C bridge of the Egnatia Odos motorway, as well as using experimental vibration data from a laboratory small-scaled bridge section.  相似文献   

2.
A reliable computational model is necessary for evaluating the state and predicting the future performance of existing structures, especially after exposure to damaging effects such as an earthquake. A major problem with the existing iterative‐based model updating methods is that the search might be trapped in local optima. The genetic algorithms (GAs) offer a desirable alternative because of their ability in performing a robust search for the global optimal solution. This paper presents a GA‐based model updating approach using a real‐coding scheme for global model updating based on dynamic measurement data. An eigensensitivity method is employed to further fine‐tune the GA updated results in case the sensitivity problem arises due to restricted measurement information. The application on shear‐type frames reveals that with a limited amount of modal data, namely the lowest three natural frequencies and the first mode shape, it is possible to achieve satisfactory updating by the GA alone for cases involving a limited number of parameters (storey stiffness herein). With the incorporation of the eigensensitivity algorithm, the updating capability is extended to a sufficiently large number of parameters. In case the modal data contain errors, the GA is also shown to be able to update the model to a satisfactory accuracy, provided the required amount of modal data is available. An example is given in which a 6‐DOF stick model for an actual six‐storey RC frame is updated using the measured dynamic properties. The effectiveness of the updating is evaluated by comparing the measured and predicted seismic response using the updated model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.  相似文献   

4.
Dense networks of wireless structural health monitoring systems can effectively remove the disadvantages associated with current wire‐based sparse sensing systems. However, recorded data sets may have relative time‐delays due to interference in radio transmission or inherent internal sensor clock errors. For structural system identification and damage detection purposes, sensor data require that they are time synchronized. The need for time synchronization of sensor data is illustrated through a series of tests on asynchronous data sets. Results from the identification of structural modal parameters show that frequencies and damping ratios are not influenced by the asynchronous data; however, the error in identifying structural mode shapes can be significant. The results from these tests are summarized in Appendix A. The objective of this paper is to present algorithms for measurement data synchronization. Two algorithms are proposed for this purpose. The first algorithm is applicable when the input signal to a structure can be measured. The time‐delay between an output measurement and the input is identified based on an ARX (auto‐regressive model with exogenous input) model for the input–output pair recordings. The second algorithm can be used for a structure subject to ambient excitation, where the excitation cannot be measured. An ARMAV (auto‐regressive moving average vector) model is constructed from two output signals and the time‐delay between them is evaluated. The proposed algorithms are verified with simulation data and recorded seismic response data from multi‐story buildings. The influence of noise on the time‐delay estimates is also assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Modal parameters of structural systems have commonly been determined using system identification (SI) methods for damage detection and health monitoring. For determining the deterioration of the integrity of structural systems correctly, modal parameters of a healthy structure have to be obtained with adequate certainty so that these parameters can be used as reliable references for the healthy system to compare with those of the damaged system. In this study, the statistical significance of modal parameters identified using strong motion time histories recorded on two bridge structures is assessed. The confidence intervals of identified modal frequencies and damping ratios are obtained using Monte Carlo simulations and sensitivity analyses in conjunction with eigenrealization algorithm. The dependence of the statistical bounds on model parameters is examined. The effect of using different number of sensors on the statistical significance is evaluated using simulated time history data from a validated finite element model of a bridge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.  相似文献   

7.
对主跨为160m的预应力砼变截面连续梁桥佛开高速九江大桥进行了理论与实验模态分析.首先介绍了环境激励条件下现场模态测试布置及过程,利用随机子空间法(SSI)进行了桥梁模态参数识别.建立了桥梁有限元模型.并对理论和实验模态分析结果进行了比较和讨论。实验与有限元计算结果在竖向模态频率及振型上总体吻合较好。测试结果可以为有限元模型修正提供依据:模态测试与有限元分析相结合.可以为桥梁长期健康监测和损伤评估提供较可靠的基准模型。  相似文献   

8.
基于响应面的预应力混凝土桥动力有限元模型研究   总被引:1,自引:0,他引:1  
朱彤  殷广庆 《地震学刊》2013,(6):644-650
建立了基于正交实验的响应面模型和精细有限元模型,并将其用于中华大桥的有限元模型修正,通过实测动力数据对修正后的有限元模型计算结果进行了验证。基于修正后的有限元模型,分析了预应力对预应力钢筋混凝土桥梁模态信息(频率和振型)的影响,以及单元类型对桥梁模态频率的影响。结果表明,修正后的有限元模型能够比较准确地反映桥梁实际结构的动力特性,基于响应面模型和遗传算法的修正方法可有效地用于大桥的健康监测和状态评估;预应力对预应力钢筋混凝土桥梁模态信息的影响较小,建模时可不予精确考虑;对于由多根预应力混凝土梁组成的桥梁体系,采用实体单元分析较好。  相似文献   

9.
An extensive programme of full-scale ambient vibration tests has been conducted to measure the dynamic response of a 542 m (centre span of 274 m) cable-stayed bridge—the Quincy Bayview Bridge in Illinois. A microcomputer-based system was used to collect and analyse the ambient vibration data. A total of 25 modal frequencies and associated mode shapes were identified for the deck structure within the frequency range of 0–2 Hz. Also, estimations were made for damping ratios. The experimental data clearly indicated the occurrence of many closely spaced modal frequencies and spatially complicated mode shapes. Most tower modes were found to be associated with the deck modes, implying a considerable interaction between the deck and tower structure. No detectable levels of motion were evident at the foundation support of the pier. The results of the ambient vibration survey were compared to modal frequencies and mode shapes computed using a three-dimensional finite element model of the bridge. For most modes, the analytic and experimental modal frequencies and mode shapes compare quite well, especially for the vertical modes. Based on the findings of this study, a linear elastic finite element model appears to be capable of capturing much of the complex dynamic behaviour of the bridge with very good accuracy, when compared to the low-level dynamic responses induced by ambient wind and traffic excitations.  相似文献   

10.
This paper presents a linear predictor (LP)‐based lossless sensor data compression algorithm for efficient transmission, storage and retrieval of seismic data. Auto‐Regressive with eXogenous input (ARX) model is selected as the model structure of LP. Since earthquake ground motion is typically measured at the base of monitored structures, the ARX model parameters are calculated in a system identification framework using sensor network data and measured input signals. In this way, sensor data compression takes advantage of structural system information to maximize the sensor data compression performance. Numerical simulation results show that several factors including LP order, measurement noise, input and limited sensor number affect the performance of the proposed lossless sensor data compression algorithm concerned. Generally, the lossless data compression algorithm is capable of reducing the size of raw sensor data while causing no information loss in the sensor data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fi tting procedure. The analytical expressions of modal combination (correlation) coeffi cients of structural response are developed for multi-support seismic excitations. The coeffi cients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coeffi cients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coeff icients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational effi ciency of the analytical solutions of the modal combination coeff icients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coeffi cients is less than 1/20 of that using numerical integral methods.  相似文献   

12.
A technique to extract real modes from the identified complex modes is presented in this paper, which enables the normalized real mode shapes, modal masses, and full or reduced mass and stiffness matrices to be obtained. The theoretical derivation of the method is provided in detail. An 11-DOF vibration system is used to validate the algorithm, and to analyze the effects of the number of modes utilized and measurement DOFs on the extraction results. Finally, the method is used to extract real modes from both experimental modal analysis and operational modal analysis.  相似文献   

13.
Structural identification is the inverse problem of estimating physical parameters of a structural system from its vibration response measurements. Incomplete instrumentation and ambient vibration testing generally result in incomplete and arbitrarily normalized measured modal information, often leading to an ill‐conditioned inverse problem and non‐unique identification results. The identifiability of any parameter set of interest depends on the amount of independent available information. In this paper, we consider the identifiability of the mass and stiffness parameters of shear‐type systems in output‐only situations with incomplete instrumentation. A mode shape expansion‐cum‐mass normalization approach is presented to obtain the complete mass normalized mode shape matrix, starting from the incomplete non‐normalized modes identified using any operational modal analysis technique. An analysis is presented to determine the minimum independent information carried by any given sensor set‐up. This is used to determine the minimum necessary number and location of sensors from the point of view of minimum necessary information for identification. The different theoretical discussions are illustrated using numerical simulations and shake table experiments. It is shown that the proposed identification algorithm is able to obtain reliably accurate physical parameter estimates under the constraints of minimal instrumentation, minimal a priori information, and unmeasured input. The sensor placement rules can be used in experiment design to determine the necessary number and location of sensors on the monitored system. John Wiley & Sons, Ltd.  相似文献   

14.
本文提出一个通过正交三角分解快速计算有效独立法系数的方法。有效独立法是传感器布设中影响最广泛的一种方法,它使目标模态尽可能线性独立。传统的有效独立法计算需要对信息阵进行特征值分解或者计算矩阵逆,计算量较大。本文在笔者以前得出的有效独立法与模态动能法关系的基础上,提出先通过对模态矩阵进行正交三角分解(QR),然后比较其行范数即可得到有效独立法的系数,进而对各待选传感器位置进行排序并迭代依次删除。在待选传感器位置比感兴趣的模态数较多时,该法的计算效率明显提高。同时,采用正交三角分解删除一行后的更新算法,进一步提高了迭代计算的效率。最后通过I-40桥的算例表明该法的有效性。  相似文献   

15.
基于环境振动的斜拉桥拉索基频识别   总被引:16,自引:1,他引:16  
斜拉索是现代斜拉桥最重要的结构构件,索力在斜拉桥的施工控制和长期监测中起着重要作用。振动测试法是斜拉桥索力测定、监测和状态评估中应用最广泛的一种方法。振动法测索力的关键在于准确地识别出索的基频。本文使用自功率谱和倒频谱方法,基于MATLAB平台,开发出了斜拉桥拉索环境振动模态分析图形用户交互(GUI)工具箱,实现了斜拉索基频的快速自动识别。应用本文的方法,对福州青洲闽江主跨605m斜拉桥拉索的环境振动实测加速度数据进行了分析处理,斜拉索基频识别方便直观,结果可靠。  相似文献   

16.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The error-propagation characteristics of an implicit time integration algorithm in pseudodynamic testing are examined. It is shown that the implicit algorithm is superior to explicit integration algorithms in terms of experimental error amplification. The influence of systematic experimental errors is studied and methods for controlling these errors are examined. In spite of the fact that the implicit algorithm is unconditionally stable, it is shown that the integration time interval in a pseudodynamic test is limited by the calibration range of the electronic hardware as well as the degree of participation of the higher modes. Furthermore, the tolerance for experimental errors decreases as the integration time interval increases.  相似文献   

18.
新型Landsat8卫星影像的反射率和地表温度反演   总被引:20,自引:0,他引:20       下载免费PDF全文
Landsat 8卫星自2013年2月发射以来,其影像的定标参数经过了不断调整和完善,针对Landsat 8开发的各种算法也相继问世.本文采用最新的参数、算法和引入COST算法建立的大气校正模型,对Landsat 8多光谱和热红外波段进行了处理,反演出它们的反射率和地表温度,并与同日的Landsat 7数据和实测地表温度数据进行了对比.结果表明,现有Landsat 8多光谱数据的定标参数和大气顶部反射率反演算法已有很高的精度,本文引入COST算法建立的Landsat 8大气校正模型也与Landsat 7的COST模型所获得的结果几乎相同,相关系数可高达0.99.但是现有针对Landsat 8提出的地表温度反演算法仍不理想,已提出的劈窗算法误差都较大.鉴于TIRS 11热红外波段的定标参数仍不理想,因此在现阶段建议采用单通道算法单独反演TIRS 10波段来求算地表温度,但要注意根据大气水汽含量的情况选用正确的大气参数计算公式.  相似文献   

19.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号