首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Oceanic vertical mixing is known to influence the state of the equatorial ocean which affects the climate system, including the amplitude of El Niño/Southern Oscillation (ENSO). Recent measurements of ocean currents at high vertical resolution capture numerous small vertical scale structures (SVSs) within and above the equatorial thermocline that contribute significantly to vertical mixing but which are not sufficiently resolved by coarse resolution ocean models. We investigate the impact of the vertical mixing induced by the SVSs on the mean state and interannual variability in the tropical Pacific by using a coupled general circulation model. The vertical mixing induced by the SVSs is represented as an elevated vertical diffusivity from the surface down to the 20 °C isotherm depth, a proxy for the depth of the thermocline. We investigate different forms for the elevated mixing. It is found that the SVS-induced mixing strongly affect the mean state of the ocean leading to a warming of sea surface temperature (SST) and associated deepening and sharpening of the thermocline in the eastern equatorial Pacific. We find that the SST warming induced by the elevated mixing is further strengthened through the Bjerknes feedback and SST-shortwave flux feedback. We also find a reduction in the number of large amplitude ENSO events and in certain cases an increase in the skewness of ENSO.  相似文献   

2.
The response of El Niño and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO2 concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Niño-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.  相似文献   

3.
We propose a dynamical interpretation of the inverse relationship between the tropical eastern Pacific annual-cycle (AC) amplitude and the El Niño-Southern Oscillation (ENSO) amplitude, based on a pre-industrial simulation of Geophysical Fluid Dynamics Laboratory Couple climate model 2.0 with a fixed concentration of greenhouse gases spanning approximately 500 years. The slowly varying background conditions over more than a decade alternately provided favorable conditions for two opposite regimes, namely the ‘strong AC—weak ENSO regime’ and the ‘weak AC—strong ENSO regime’. For the weak AC—strong ENSO regime, the tropical eastern Pacific shows meridional-asymmetric surface warming with an emphasis on the southern part, leading to weakening of both the zonal trade wind and the cross equatorial southerly wind, as well as deepening of both the thermocline and mixed layer. The deeper mixed layer, weaker southerly wind, and reduced zonal gradient of the mean sea surface temperature due to tropical eastern Pacific warming all acts to reduce the AC. Conversely, the ENSO was intensified by the deeper mixed layer and deeper thermocline depth (thermocline feedback), but suppressed by the deeper thermocline depth (Ekman feedback) and the reduced zonal temperature gradient. We also computed the coupling strengths of the ENSO and AC, defined as the linear regression coefficients of the zonal and meridional wind stresses against the eastern Pacific SST, respectively. The coupling strengths of both the AC and ENSO are larger when they are intensified, and vice versa. All processes for the weak AC—strong ENSO regime operate in the opposite manner for the strong AC—weak ENSO regime.  相似文献   

4.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

5.
Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.  相似文献   

6.
F. Codron 《Climate Dynamics》2001,17(2-3):187-203
 The changes of the variability of the tropical Pacific ocean forced by a shift of six months in the date of the perihelion are studied using a coupled tropical Pacific ocean/global atmosphere GCM. The sensitivity experiments are conducted with two versions of the atmospheric model, varied by two parametrization changes. The first one concerns the interpolation scheme between the atmosphere and ocean models grids near the coasts, the second one the advection of water vapor in the presence of downstream negative temperature gradients, as encountered in the vicinity of mountains. In the tropical Pacific region, the parametrization differences only have a significant direct effect near the coasts; but coupled feedbacks lead to a 1 °C warming of the equatorial cold tongue in the modified (version 2) model, and a widening of the western Pacific large-scale convergence area. The sensitivity of the seasonal cycle of equatorial SST is very different between the two experiments. In both cases, the response to the solar flux forcing is strongly modified by coupled interactions between the SST, wind stress response and ocean dynamics. In the first version, the main feedback is due to anomalous upwelling and leads to westward propagation of SST anomalies; whereas the version 2 model is dominated by an eastward-propagating thermocline mode. The main reason diagnosed for these different behaviors is the atmospheric response to SST anomalies. In the warmer climate simulated by the second version, the wind stress response in the western Pacific is enhanced, and the off-equatorial curl is reduced, both effects favoring eastward propagation through thermocline depth anomalies. The modifications of the simulated seasonal cycle in version 2 lead to a change in ENSO behavior. In the control climate, the interannual variability in the eastern Pacific is dominated by warm events, whereas cold events tend to be the more extreme ones with a shifted perihelion. Received: 14 December 1999 / Accepted: 24 May 2000  相似文献   

7.
In this study, the phase-locking of El Nino Southern Oscillation (ENSO) in a coupled model with different physical parameter values is investigated. It is found that there is a dramatic change in ENSO phase-locking in response to a slight change in the Tokioka parameter, which is a minimum entrainment rate threshold in the cumulus parameterization. With a smaller Tokioka parameter, the model simulates ENSO peak in the boreal summer season rather than in the winter season as observed. It is revealed that the differences in climatological zonal sea surface temperature (SST) gradient and its associated mean state changes are crucial to determine the phase-locking of ENSO. In the simulations with smaller Tokioka parameter values, climatological zonal SST gradient during the boreal summer is excessively large, because the zonally-asymmetric SST change (i.e., SST increase is relatively smaller over the eastern Pacific) is maximum during the boreal summer when the eastern Pacific SST is the coolest of the year. The enhanced climatological zonal SST gradient in boreal summer reduces the convection over the eastern Pacific, which leads to a weakening of air–sea coupling strength. The minimum coupling strength during summer prevents SST anomalies from further development in the following season, which favors SST maximum during summer. In addition, enhanced zonal SST gradient and resultant thermocline shoaling over the eastern Pacific lead to excessive zonal advective feedback and thermocline feedback. Atmospheric damping is also weakened during boreal summer season. These changes due to feedback processes allow an excessive development of SST anomalies during the summer time, and lead to a summer peak of ENSO. The importance of basic state change for the ENSO phase-locking is also validated in a multi-model framework using the Coupled Model Intercomparison Project phase-3 archive. It is found that several of the climate models have the same problem in producing a summer peak of ENSO. Consistent with the simulations with different physical parameter values, these models have minimum air–sea coupling strength during the boreal summer season. Also, they have stronger climatological zonal SST gradient and shallower climatological thermocline depth over the eastern Pacific during the boreal summer season.  相似文献   

8.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

9.
The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate.  相似文献   

10.
2015/2016年发生的极端El Ni?o事件,与1997/1998年El Ni?o事件具有可比拟的强度,但是2016年事件转变为弱La Ni?a,而1998年事件则为强La Ni?a。本文通过对比这两次极端El Ni?o事件,揭示其转变为不同强度La Ni?a事件的物理机制。混合层热收支分析的结果表明,在El Ni?o衰减年的4~11月,2016年平流反馈和温跃层反馈相对较弱,混合层温度衰减速率慢,其产生的主要原因是赤道中西太平洋的东风异常较弱。进一步分析表明,赤道中西太平洋的东风异常与副热带东北太平洋的海表温度异常(SSTA)有关,该地区的SST在1998年表现为冷异常,2016年为暖异常。副热带东北太平洋冷的SSTA有利于信风加强,从而加强中西太平洋的东风异常;而暖的SSTA使得赤道以北出现西南风异常,从而削弱中西太平洋的东风异常。此外,合成分析也表明,副热带东北太平洋SSTA与转变的La Ni?a的强度具有关联,El Ni?o转变为强La Ni?a的情况在位相转变期伴随着副热带北太平洋冷的SSTA,而El Ni?o转变为弱La Ni?a的情况没有明显的冷SSTA。  相似文献   

11.
To extend the linear stochastically forced paradigm of tropical sea surface temperature (SST) variability to the subsurface ocean, a linear inverse model (LIM) is constructed from the simultaneous and 3-month lag covariances of observed 3-month running mean anomalies of SST, thermocline depth, and zonal wind stress. This LIM is then used to identify the empirically-determined linear dynamics with physical processes to gauge their relative importance to ENSO evolution. Optimal growth of SST anomalies over several months is triggered by both an initial SST anomaly and a central equatorial Pacific thermocline anomaly that propagates slowly eastward while leading the amplifying SST anomaly. The initial SST and thermocline anomalies each produce roughly half the SST amplification. If interactions between the sea surface and the thermocline are removed in the linear dynamical operator, the SST anomaly undergoes less optimal growth but is also more persistent, and its location shifts from the eastern to central Pacific. Optimal growth is also found to be essentially the result of two stable eigenmodes with similar structure but differing 2- and 4-year periods evolving from initial destructive to constructive interference. Variations among ENSO events could then be a consequence not of changing stability characteristics but of random excitation of these two eigenmodes, which represent different balances between surface and subsurface coupled dynamics. As found in previous studies, the impact of the additional variables on LIM SST forecasts is relatively small for short time scales. Over time intervals greater than about 9?months, however, the additional variables both significantly enhance forecast skill and predict lag covariances and associated power spectra whose closer agreement with observations enhances the validation of the linear model. Moreover, a secondary type of optimal growth exists that is not present in a LIM constructed from SST alone, in which initial SST anomalies in the southwest tropical Pacific and Indian ocean play a larger role than on shorter time scales, apparently driving sustained off-equatorial wind stress anomalies in the eastern Pacific that result in a more persistent equatorial thermocline anomaly and a more protracted (and predictable) ENSO event.  相似文献   

12.
With the Zebiak–Cane model, the relationship between the optimal precursors (OPR) for triggering the El Niño/Southern Oscillation (ENSO) events and the optimally growing initial errors (OGE) to the uncertainty in El Niño predictions is investigated using an approach based on the conditional nonlinear optimal perturbation. The computed OPR for El Niño events possesses sea surface temperature anomalies (SSTA) dipole over the equatorial central and eastern Pacific, plus positive thermocline depth anomalies in the entire equatorial Pacific. Based on the El Niño events triggered by the obtained OPRs, the OGE which cause the largest prediction errors are computed. It is found that the OPR and OGE share great similarities in terms of localization and spatial structure of the SSTA dipole pattern over the central and eastern Pacific and the relatively uniform thermocline depth anomalies in the equatorial Pacific. The resemblances are possibly caused by the same mechanism of the Bjerknes positive feedback. It implies that if additional observation instruments are deployed to the targeted observations with limited coverage, they should preferentially be deployed in the equatorial central and eastern Pacific, which has been determined as the sensitive area for ENSO prediction, to better detect the early signals for ENSO events and reduce the initial errors so as to improve the forecast skill.  相似文献   

13.
热带太平洋西风异常对ENSO事件发生的作用   总被引:6,自引:5,他引:6  
傅云飞  黄荣辉 《大气科学》1996,20(6):641-654
本文从观测资料对80年代两次ENSO事件产生过程中,热带太平洋西风异常及其对赤道中、东太平洋表层海温增暖的作用进行了分析和比较。分析结果表明:在这两次ENSO事件的产生过程中,赤道西太平洋上空均有较大的西风异常,并且它由赤道西太平洋向赤道中、东太平洋传播,随着西风异常从西向东传播,赤道中、东太平洋的表层相继增温。分析还表明,1982/1983年ENSO事件发生过程中,热带太平洋西风异常的强度要比1986/1987年热带太平洋西风异常强得多,这使得1982/1983 ENSO事件的强度比1986/1987_ENSO事件强得多。为了说明热带西太平洋西风异常对赤道中、东太平洋ENSO事件发生的作用,本文还利用IAP太平洋环流模式对西风异常在ENSO事件产生过程中的作用进行了数值模拟。模拟的结果说明了热带太平洋的西风异常对赤道太平洋暖水的向东传播和赤道中、东太平洋的增温起了很重要作用,这与观测事实分析一致。  相似文献   

14.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.  相似文献   

15.
ENSO及其组合模态对中国东部各季节降水的影响   总被引:7,自引:1,他引:6  
近期的研究发现,热带太平洋低层大气存在两种主要模态,即经向对称ENSO模态和ENSO与海表温度(SST)年循环相互作用产生的经向反对称组合模态。主要探讨了这两种不同ENSO模态对中国东部各季节降水的影响。结果表明,厄尔尼诺年秋季,中国西南、长江及华南大部分区域呈现显著正降水异常;冬季,正降水异常范围扩大,覆盖华南、华东及华北东南部地区。这两个季节的异常降水都主要受ENSO模态的影响。与ENSO模态相关的正异常海温局地强迫导致120°E以西出现反气旋性环流,其西北侧增强的西南暖湿气流使得中国东部地区降水增多。次年春季,从中国华南延伸到东北出现正的异常降水,主要是ENSO组合模态的贡献。因为次年春季热带太平洋地区ENSO模态信号只局限于赤道地区,并没有对中国东部降水有显著的影响,而ENSO与海温年循环相互作用的组合模态使得与ENSO相关的赤道大气异常可以扩展到赤道以外地区。ENSO组合模态对中国降水异常有重要影响,在今后的研究和短期预测中需引起重视。   相似文献   

16.
利用月平均的HadISST海表温度、NCEP再分析资料、OAFlux海表面热通量及相关物理量资料、NCAR/NOAA云量场资料,分析了热带太平洋海表热通量的年际特征,并且进一步分析了传统El Ni?o和El Ni?o Modoki事件中湍流热通量的异常演变特征以及影响因子。在热带太平洋上,净热通量的年际变化最大振幅出现在赤道太平洋上,且主要取决于潜热通量和短波辐射通量的变化。本文还利用两类ENSO事件旺盛期海温指数对不同时期海面热通量场的偏回归分析,考察了热带太平洋海表面热通量与两类ENSO事件中海温的联系。两类海温指数对各时期热带太平洋净热通量的回归均表现为赤道太平洋上存在显著的负异常,在Ni?o3指数偏回归下的负异常范围和强度都较El Ni?o Modoki指数回归的要大,且更偏于赤道东太平洋,而旺盛期海温对同期赤道东太平洋上湍流热通量的影响最大。  相似文献   

17.
Observations show that the tropical E1 Nifio-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.  相似文献   

18.
温琴  何国瑞  杨海军 《大气科学》2022,46(5):1209-1224
本文利用耦合气候模式研究了“有/无”青藏高原和落基山脉对厄尔尼诺—南方涛动(ENSO)的影响,并从温度变率方程的角度详细分析了ENSO变化的成因,结果表明:移除青藏高原或落基山脉均会造成ENSO变率增强;ENSO变率在无青藏高原试验中增强的幅度比在无落基山脉试验中更大。ENSO变率在地形敏感性试验中的变化与热带太平洋平均气候态的改变密切相关。移除青藏高原后热带太平洋信风减弱,大气对流中心东移,混合层变浅,温跃层变平,呈现出El Ni?o型海温分布,这些平均态的变化使海表风应力敏感性,Ekman抽吸敏感性以及温跃层敏感性幅度增强,最终导致ENSO振幅增大60%。然而,在移除落基山脉的情景下,热带太平洋信风变化更加复杂,大气对流中心稍有东移,混合层加深,温跃层变平,呈现出类La Ni?a型海温分布。这些变化增强了风应力敏感性和温跃层敏感性,最终导致ENSO振幅仅增大15%左右。本文研究表明,在地质时间尺度上青藏高原和落基山脉的抬升均抑制了ENSO变率。  相似文献   

19.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   

20.
This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño–Southern Oscillation (ENSO). Compared with 1979–1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号