首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand potential predictability of the ocean and climate at the decadal time scales, it is crucial to improve our understanding of internal variability at this time scale. Here, we describe a 20-year mode of variability found in the North Atlantic in a 1,000-year pre-industrial simulation of the IPSL-CM5A-LR climate model. This mode involves the propagation of near-surface temperature and salinity anomalies along the southern branch of the subpolar gyre, leading to anomalous sea-ice melting in the Nordic Seas, which then forces sea-level pressure anomalies through anomalous surface atmospheric temperatures. The wind stress associated to this atmospheric structure influences the strength of the East Greenland Current across the Denmark Strait, which, in turn, induces near-surface temperature and salinity anomalies of opposite sign at the entrance of the Labrador Sea. This starts the second half of the cycle after approximatively 10 years. The time scale of the cycle is thus essentially set by advection of tracers along the southern branch of the subpolar gyre, and by the time needed for anomalous East Greenland Current to accumulate heat and freshwater anomalies at the entrance of the Labrador Sea. The Atlantic meridional overturning circulation (AMOC) does not play a dominant role in the mode that is confined in the subpolar North Atlantic, but it also has a 20-year preferred timescale. This is due to the influence of the propagating salinity anomalies on the oceanic deep convection. The existence of this preferred timescale has important implications in terms of potential predictability of the North Atlantic climate in the model, although its realism remains questionable and is discussed.  相似文献   

2.
This paper is mainly concerned with the understanding and attribution of the recent observed freshening trend in the subpolar North Atlantic Ocean. From previous coupled model studies and an analysis of the long HadCM3 control simulation, it seems unlikely that this freshening trend is a direct consequence of anthropogenically forced climate change. It is shown in this paper that the subpolar North Atlantic can be freshened to the observed degree without invoking substantial large-scale surface freshwater flux changes. The source of freshening can come from a freshwater redistribution within the Arctic/subpolar North Atlantic. The redistribution (involving both liquid water and sea ice) is carried by a perturbed ocean circulation change in the subpolar seas and triggered by deep convection in the Labrador Sea. The freshening can be widespread but mainly in the north and northwest of the subpolar North Atlantic. A sustained 30–40 years freshening trend can be easily identified in specific locations such as the Labrador Sea or in the basin wide integral of freshwater storage. At the peak, the model subpolar North Atlantic can hold around 10,000 km3 of extra freshwater. An analysis of 1,400 years HadCM3 control simulation also reveals a good correlation between freshwater content anomalies and gyre transport in the subpolar North Atlantic on decadal timescales. A general mechanism involving circulation regime changes and freshwater redistribution between the subpolar North Atlantic and the Arctic/Nordic Seas is proposed, which can resolve a number of seemingly contradictory observed changes in the North Atlantic and contributes to the longer term goal of a full understanding of recent North Atlantic fresh water changes.  相似文献   

3.
Recent studies have indicated that the multidecadal variations of the Atlantic Warm Pool (AWP) can induce a significant freshwater change in the tropical North Atlantic Ocean. In this paper, the potential effect of the AWP-induced freshwater flux on the Atlantic Meridional Overturning Circulation (AMOC) is studied by performing a series of ocean–sea ice model experiments. Our model experiments demonstrate that ocean response to the anomalous AWP-induced freshwater flux is primarily dominated by the basin-scale gyre circulation adjustments with a time scale of about two decades. The positive (negative) freshwater anomaly leads to an anticyclonic (cyclonic) circulation overlapping the subtropical gyre. This strengthens (weakens) the Gulf Stream and the recirculation in the interior ocean, thus increases warm (cold) water advection to the north and decreases cold (warm) water advection to the south, producing an upper ocean temperature dipole in the midlatitude. As the freshwater (salty water) is advected to the North Atlantic deep convection region, the AMOC and its associated northward heat transport gradually decreases (increases), which in turn lead to an inter-hemispheric SST seesaw. In the equilibrium state, a comma-shaped SST anomaly pattern develops in the extratropical region, with the largest amplitude over the subpolar region and an extension along the east side of the basin and into the subtropical North Atlantic. Based on our model experiments, we argue that the multidecadal AWP-induced freshwater flux can affect the AMOC, which plays a negative feedback role that acts to recover the AMOC after it is weakened or strengthened. The sensitivity of AMOC response to the AWP-induced freshwater forcing amplitude is also examined and discussed.  相似文献   

4.
The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic.  相似文献   

5.
Sea ice induced changes in ocean circulation during the Eemian   总被引:1,自引:1,他引:0  
We argue that Arctic sea ice played an important role during early stages of the last glacial inception. Two simulations of the Institut Pierre Simon Laplace coupled model 4 are analyzed, one for the time of maximum high latitude summer insolation during the last interglacial, the Eemian, and a second one for the subsequent summer insolation minimum, at the last glacial inception. During the inception, increased Arctic freshwater export by sea ice shuts down Labrador Sea convection and weakens overturning circulation and oceanic heat transport by 27 and 15%, respectively. A positive feedback of the Atlantic subpolar gyre enhances the initial freshening by sea ice. The reorganization of the subpolar surface circulation, however, makes the Atlantic inflow more saline and thereby maintains deep convection in the Nordic Seas. These results highlight the importance of an accurate representation of dynamic sea ice for the study of past and future climate changes.  相似文献   

6.

We study the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean–atmosphere interactions that modulate the low-frequency variability in the region. Simulations from five state-of-the-art climate models performed at standard and high-resolution as part of the High-Resolution Model Inter-comparison Project (HighResMIP) were analysed. In some models, the resolution is enhanced in the atmospheric and oceanic components whereas, in some other models, the resolution is increased only in the atmosphere. Enhancing the horizontal resolution from non-eddy to eddy-permitting ocean produces stronger barotropic mass transports inside the subpolar and subtropical gyres. The first mode of inter-annual variability is associated with the North Atlantic Oscillation (NAO) in all the cases. The rapid ocean response to it consists of a shift in the position of the inter-gyre zone and it is better captured by the non-eddy models. The delayed ocean response consists of an intensification of the subpolar gyre (SPG) after around 3 years of a positive phase of NAO and it is better represented by the eddy-permitting oceans. A lagged relationship between the intensity of the SPG and the Atlantic Meridional Overturning Circulation (AMOC) is stronger in the cases of the non-eddy ocean. Then, the SPG is more tightly coupled to the AMOC in low-resolution models.

  相似文献   

7.
A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, ~60?C27?ka BP) than during Termination 1 (T1, ~18?C10?ka BP) and especially around the Last Glacial Maximum (LGM, ~23?C19?ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56?ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15?Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200?years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (?0.6?kg?m?3 surface density anomaly to the 56k reference state) is stochastically crossed in the Nordic Seas. While described details are model-specific, our results imply that a more northern location of deep convection sites during milder glacial times may have amplified frequency and amplitude of abrupt climate shifts.  相似文献   

8.
The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland?CScotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.  相似文献   

9.
于雷  郜永祺  王会军 《大气科学》2009,33(1):179-197
利用卑尔根海洋-大气-海冰耦合气候模式(Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, 简称AMOC)的响应及其机制, 着重讨论了海表热力性质、北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征。结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复。同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复。恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复。研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强。  相似文献   

10.
A multi-model analysis of Atlantic multidecadal variability is performed with the following aims: to investigate the similarities to observations; to assess the strength and relative importance of the different elements of the mechanism proposed by Delworth et al. (J Clim 6:1993–2011, 1993) (hereafter D93) among coupled general circulation models (CGCMs); and to relate model differences to mean systematic error. The analysis is performed with long control simulations from ten CGCMs, with lengths ranging between 500 and 3600 years. In most models the variations of sea surface temperature (SST) averaged over North Atlantic show considerable power on multidecadal time scales, but with different periodicity. The SST variations are largest in the mid-latitude region, consistent with the short instrumental record. Despite large differences in model configurations, we find quite some consistency among the models in terms of processes. In eight of the ten models the mid-latitude SST variations are significantly correlated with fluctuations in the Atlantic meridional overturning circulation (AMOC), suggesting a link to northward heat transport changes. Consistent with this link, the three models with the weakest AMOC have the largest cold SST bias in the North Atlantic. There is no linear relationship on decadal timescales between AMOC and North Atlantic Oscillation in the models. Analysis of the key elements of the D93 mechanisms revealed the following: Most models present strong evidence that high-latitude winter mixing precede AMOC changes. However, the regions of wintertime convection differ among models. In most models salinity-induced density anomalies in the convective region tend to lead AMOC, while temperature-induced density anomalies lead AMOC only in one model. However, analysis shows that salinity may play an overly important role in most models, because of cold temperature biases in their relevant convective regions. In most models subpolar gyre variations tend to lead AMOC changes, and this relation is strong in more than half of the models.  相似文献   

11.
利用卑尔根海洋-大气-海冰耦合气候模式 (Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流 (Atlantic Meridional Overturning Circulation, 简称AMOC) 的响应及其机制, 着重讨论了海表热力性质、 北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征.结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复.同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复.恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复.研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强.  相似文献   

12.
The Community Climate System Model version 3, (CCSM3) is used to investigate the effect of the high latitude North Atlantic subsurface ocean temperature response in idealized freshwater hosing experiments on the strength of the Atlantic meridional overturning circulation (AMOC). The hosing experiments covered a range of input magnitudes at two locations in a glacial background state. Subsurface subpolar ocean warms when freshwater is added to the high latitude North Atlantic (NATL cases) and weakly cools when freshwater is added to the Gulf of Mexico (GOM cases). All cases show subsurface ocean warming in the Southern Hemisphere (SH). The sensitivity of the AMOC response to the location and magnitude of hosing is related to the induced subsurface temperature response, which affects the magnitude of the large-scale meridional pressure gradient at depth through the effect on upper ocean density. The high latitude subsurface warming induced in the NATL cases lowers the upper ocean density in the deepwater formation region enhancing a density reduction by local freshening. In the GOM cases the effect of SH warming partially offsets the effect of the high latitude freshening on the meridional density gradient. Following the end of hosing, a brief convective event occurs in the largest NATL cases which flushes some of the heat stored in the subsurface layers. This fuels a rapid rise in AMOC that lasts less than a couple of decades before subsequent freshening from increases in precipitation and sea ice melt reverses the initial increase in the meridional density gradient. Thereafter AMOC recovery slows to the rate found in comparable GOM cases. The result for these glacial transient hosing experiments is that the pace of the longer recovery is not sensitive to location of the imposed freshwater forcing.  相似文献   

13.
Interdecadal climate variability in the subpolar North Atlantic   总被引:1,自引:0,他引:1  
The statistical relationships between various components of the subpolar North Atlantic air-sea-ice climate system are reexamined in order to investigate potential processes involved in interdecadal climate variability. It is found that sea surface temperature anomalies concentrated in the Labrador Sea region have a strong impact upon atmospheric sea level pressure anomalies over Greenland, which in turn influence the transport of freshwater and ice anomalies out of the Arctic Ocean, via Fram Strait. These freshwater and ice anomalies are advected around the subpolar gyre into the Labrador Sea affecting convection and the formation of Labrador Sea Water. This has an impact upon the transport of North Atlantic Current water into the subpolar gyre and thus, also upon sea surface temperatures in the region. An interdecadal negative feedback loop is therefore proposed as an internal source of climate variability within the subpolar North Atlantic. Through the lags associated with the correlations between different climatic components, observed horizontal advection time scales, and the use of Boolean delay equation models, the time scale for one cycle of this feedback loop is determined to have a period of about 21 years.  相似文献   

14.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

15.
The subpolar gyre index (SPG), derived from the analysis of sea surface height (SSH), is proposed to be a potential indicator for the North Atlantic Meridional Overturning Circulation (AMOC) based on observation as well as the Ocean General Circulation Model (OGCM). We investigated the correspondence between the SPG and the AMOC in a coupled climate model. Our results confirm that the SPG can be used as an early indicator for the AMOC in the subtropical North Atlantic. Changes in the SPG are closely related to variations in the air-sea heat exchange in the Labrador Sea, and variations in deep water formation and southward dense water transport with the deep western boundary current (DWBC) in the North Atlantic. Citation: Gao, Y. Q., and L. Yu, 2008: Subpolar gyre index and the North Atlantic meridional overturning circulation in a coupled climate model, Atmos. Oceanic Sci. Lett., 1, 29-32  相似文献   

16.
Observations show a multidecadal signal in the North Atlantic ocean, but the underlying mechanism and cause of its timescale remain unknown. Previous studies have suggested that it may be driven by the North Atlantic Oscillation (NAO), which is the dominant pattern of winter atmospheric variability. To further address this issue, the global ocean general circulation model, Nucleus for European Modelling of the Ocean (NEMO), is driven using a 2,000 years long white noise forcing associated with the NAO. Focusing on key ocean circulation patterns, we show that the Atlantic Meridional Overturning Circulation (AMOC) and Sub-polar gyre (SPG) strength both have enhanced power at low frequencies but no dominant timescale, and thus provide no evidence for a oscillatory ocean-only mode of variability. Instead, both indices respond linearly to the NAO forcing, but with different response times. The variability of the AMOC at 30°N is strongly enhanced on timescales longer than 90 years, while that of the SPG strength starts increasing at 15 years. The different response characteristics are confirmed by constructing simple statistical models that show AMOC and SPG variability can be related to the NAO variability of the previous 53 and 10 winters, respectively. Alternatively, the AMOC and the SPG strength can be reconstructed with Auto-regressive (AR) models of order seven and five, respectively. Both statistical models reconstruct interannual and multidecadal AMOC variability well, while on the other hand, the AR(5) reconstruction of the SPG strength only captures multidecadal variability. Using these methods to reconstruct ocean variables can be useful for prediction and model intercomparision.  相似文献   

17.
A global fine resolution curvilinear ocean model, forced by NCEP Re-Analysis fluxes, is used to study changes in the circulation of the Nordic Seas and surrounding ocean basins during 1994-2001. The model fields exhibit regionally distinct temporal variability, mostly determined by atmospheric forcing but in regions of significant sea-ice longer timescale variability is found. Some abrupt circulation changes accompany the relaxation of the westerlies following the peak North Atlantic Oscillation Index phase of the mid 1990s. The Greenland gyre spins up over the following years, with the increased circulation partially exiting through the Denmark Strait into the northern Atlantic as well as re-circulating within the Nordic Seas. This resulted in a distinct freshening around northern Iceland and an increase in the East Icelandic Current. However, these latter increases steadied after 1998, as the increased Greenland Sea gyre circulation led to a greater proportion of water leaving through the Denmark Strait, rather than re-circulating. The model Denmark Strait Outflow therefore doubles during the latter half of the 1990s. Increased convection in the Icelandic Sea in the model in 1998-2001 acted to obliterate the anomalies that would otherwise have fed into the East Icelandic Current. A fresh, cold anomaly from the Arctic during 1998/1999 is shown to propagate through the system. Model and observations show good agreement generally, but diverge at depth more in the last few years of the simulation. The model shows that density anomalies within the East Greenland Current do not exclusively derive from the Arctic but may also arise from air-sea interaction within the Greenland Sea. Convection is a major means of limiting anomaly propagation within the model. The contrast of climatological with daily forcing shows the inherent strength of the variability in the ocean circulation on sub-decadal timescales.  相似文献   

18.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

19.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

20.
We investigate the formation process and pathways of deep water masses in a coupled ice–ocean model of the Arctic and North Atlantic Oceans. The intent is to determine the relative roles of these water masses from the different source regions (Arctic Ocean, Nordic Seas, and Subpolar Atlantic) in the meridional overturning circulation. The model exhibits significant decadal variability in the deep western boundary current and the overturning circulation. We use detailed diagnostics to understand the process of water mass formation in the model and the resulting effects on the North Atlantic overturning circulation. Particular emphasis is given to the multiple sources of North Atlantic Deep Water, the dominant deep water masses of the world ocean. The correct balance of Labrador Sea, Greenland Sea and Norwegian Sea sources is difficult to achieve in climate models, owing to small-scale sinking and convection processes. The global overturning circulation is described as a function of potential temperature and salinity, which more clearly signifies dynamical processes and clarifies resolution problems inherent to the high latitude oceans. We find that fluxes of deep water masses through various passages in the model are higher than observed estimates. Despite the excessive volume flux, the Nordic Seas overflow waters are diluted by strong mixing and enter the Labrador Sea at a lighter density. Through strong subpolar convection, these waters along with other North Atlantic water masses are converted into the densest waters [similar density to Antarctic Bottom Water (AABW)] in the North Atlantic. We describe the diminished role of salinity in the Labrador Sea, where a shortage of buoyant surface water (or excess of high salinity water) leads to overly strong convection. The result is that the Atlantic overturning circulation in the model is very sensitive to the surface heat flux in the Labrador Sea and hence is correlated with the North Atlantic Oscillation. As strong subpolar convection is found in other models, we discuss broader implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号