首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于NLCCA的中国夏季降水与东亚夏季风关系的探讨   总被引:1,自引:0,他引:1  
居丽丽  郭品文 《湖北气象》2007,26(3):205-210
运用一种基于人工神经网络的非线性典型相关分析方法(NLCCA),对中国夏季降水与东亚夏季风之间的非线性关系进行了分析。结果表明,夏季降水对东亚夏季风的响应具有一定的非线性,当夏季风较强与较弱时,对应的中国夏季降水异常分布呈现明显的不对称性。夏季降水与夏季风之间的关系可分离为线性响应和非线性响应,其中非线性响应部分占总方差贡献的52.1%,说明我国夏季降水异常分布与东亚夏季风相互之间的关系既有线性特征也有非线性特征,非线性响应略显重要。  相似文献   

2.
东亚冬、夏季风强度指数及其与陕西降水变化的关系   总被引:5,自引:0,他引:5  
使用最新的海平面气压资料计算了东亚冬、夏季风强度指数,分析了近50a东亚季风的变化特征,以及东亚季风强度与陕西省降水的同期和非同期相关关系,结果表明:强的东亚冬季风,易造成陕西省冬季降水偏少,强的东亚夏季风,易造成陕西省夏季北部多雨、南部少雨的气候特征,反之亦然。此外,比较了强弱东亚冬季风年北半球500hPa高度场距平特征差异,从大气环流方面分析了东亚季风影响陕西省气候变化的原因。  相似文献   

3.
南海季风试验与东亚夏季风   总被引:66,自引:14,他引:66  
南海季风试验是一次国际性大气与海洋的联合试验 ,旨在更好地了解南海季风的爆发、维持与变化 ,以改进东亚和东南亚地区的季风预报。 1998年 5~ 8月进行的外场试验取得了圆满成功 ,获得了大量气象与海洋资料。不少国家对这些资料进行四维资料同化 ,并改进数值模拟和预报 ;同时也为东亚与南海地区季风的研究提供了必要的资料集。文中总结了中国科学家在这方面的主要研究成果 ,共包括 6个方面 :(1)南海夏季风的爆发过程与机理 ;(2 )南海季风爆发过程中对流与中尺度系统的发展及其与大尺度环流的相互作用 ;(3)低频振荡与遥相关作用 ;(4 )南海海 气通量的测量及其与季风活动的关系 ;(5 )夏季风时期南海海洋的热力结构、环流和中尺度涡旋及其与ENSO事件的关系 ;(6 )南海与东亚季风的数值模拟。  相似文献   

4.
东亚季风强度变化对河北省气候的影响   总被引:1,自引:1,他引:0  
统计分析了1951~2004年东亚季风强度历史变化规律以及东亚冬、夏季季风强度变化与河北省冬季气温和夏季降水的关系。分析表明:在冬季季风强盛阶段,河北省冬季气温以偏低为主;在冬季季风衰弱阶段,河北省冬季气温以偏高为主。夏季季风强度和河北省夏季降水呈正相关,夏季季风强的年份,河北省夏季降水偏多的几率较大,而夏季季风弱的年份,河北省夏季降水一般偏少。夏季季风的强弱与夏季季风来临迟早还存在着联系,夏季季风来临早的年份,则夏季季风强度以偏强为主;夏季季风来临迟的年份,夏季季风强度以偏弱为主。  相似文献   

5.
The Asian monsoon circulation system can be divided into two subsystems, i.e., the East Asian monsoon system(EA MS) and the Indian monsoon system (IMS). In this paper the main elements including the Indian monsoon trough, the South Asian high. the upper easterly jet etc. and the interactions between EAMS and IMS arc dealt with. The basic emphasis is put on the medium-range variations of the EAMS. Some significant results arc obtained.  相似文献   

6.
Evolution of Asian Summer Monsoon and the Slowly Varying Disturbances   总被引:3,自引:0,他引:3  
卢佩生EvolutionofAsianSummerMonsoonandtheSlowlyVaryingDisturbances¥LuPeisheng(InstituteofAtmosphericPhysics,ChineseAcademyofScie...  相似文献   

7.
Summary During most El-Ni?o events the Indian summer monsoon rainfall has been below normal. El-Ni?o that occurred during 1997 was one of the strongest in the 20th century, but did not have an adverse impact on the Indian summer monsoon rainfall in 1997. This is despite the fact that most parameters observed in May 1997 suggested that the Indian summer monsoon rainfall may be below normal. This intriguing feature of the 1997 Indian summer monsoon rainfall has been examined by studying the evolution of various parameters from May to August. The behavior of the 1997 monsoon is related to its evolution during June and July, with westward migration of cloudbands from West Pacific that increased convection over Bay of Bengal. We find that there exists a significant correlation between convective activity over Bay of Bengal and winds over the Arabian Sea with the latter lagging convection over Bay of Bengal by about three days. The convective activity over Bay of Bengal induces stronger winds over the Arabian Sea and this in turn enhances advection of moisture into the Indian landmass and leads to increased precipitable water and strength of the monsoon. Using a simple thermodynamic model we show that increased precipitable water during July leads to increased rainfall. A similar behavior has also been noticed during the 1983 monsoon, with precursors indicating a possible poor monsoon but subsequent events changed the course of the monsoon. Received May 21, 2001 Revised October 10, 2001  相似文献   

8.
关于ENSO本质的进一步研究   总被引:28,自引:5,他引:23  
基于ENSO是热带太平洋海气相互作用产物的科学观点,一系列的分析研究表明:赤道太平洋次表层海温异常(SOTA)有明显的年际变化(循环),并且与ENSO发生密切相关;ENSO的真正源区在赤道西太平洋暖池,赤道西太平洋暖池正(负)SOTA沿赤道温跃层东传到东太平洋,导致El Nino(La Nina)的爆发;在暖池正(负)SOTA沿赤道温跃层东传的同时,将有负(正)SOTA沿10°N和10°S两个纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA年际循环的驱动者主要是由异常东亚季风所引起的赤道西太平洋纬向风的异常.进而,可以提出关于ENSO本质的一种新理论,即ENSO实质上主要是由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环.    相似文献   

9.
Analysis is performed of low-frequency oscillation (LFO) and its relation to monsoon by means of ECMWF numerical prediction data in the period 1 June to 30 September 1984,indicating that remarkable local LFO exists in the vertical meridional and equatorial zonal circulations.And preliminary discussion is made of the origin of the LFO of the East-Asian summer monsoon meridional circulation in the LFO of the mid and upper troposphere vertical motion around 30°S.The LFOs in the meridional circulations of both hemispheres are linked together by the LFO of the meridional circulation.Finally the possible relation between the tropical monsoon LFO and Meiyu (plum rain).  相似文献   

10.
南海季风区地面温度变化特征及其与季风爆发的联系   总被引:8,自引:0,他引:8  
分析1979年1月至1995年12月17a南海季风区修平均地面温度资料的时空变化特征发现,中南半岛西北部和印度半岛分别为地面修平均温度标准差的大值区,其位置和强度在南海季风爆发前后月份具有显著差异。从候平均温度纬圈偏差的时间演变来看,中南半岛地区纬圈温度偏差由正转负的时间早于印度半岛地区,并分别与南海夏季风和印度夏季风爆发的时间其本对应。在夏季风爆发之前,印度半岛和中南半岛地区的地面温度是逐候增加的,季风爆发以后地面温度迅速降低,而海洋上的表面温度增温幅度明显小于与其相邻地陆地,此外,从南海季风爆发早晚年中南半岛与南海地区表面温度距平差和各自温度距平的时间演变看,中南半岛地区地面温度的变化在触发南海季风爆发及其年际变化过程中可能起主导作用。  相似文献   

11.
Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun   总被引:2,自引:0,他引:2  
The latest version of the state-of-the-art global land–atmosphere–ocean coupled climate forecast system of NCEP has shown considerable improvement in various aspects of the Indian summer monsoon. However, climatological mean dry bias over the Indian sub-continent is further increased as compared to the previous version. Here we have attempted to link this dry bias with climatological mean bias in the Eurasian winter/spring snow, which is one of the important predictors of the Indian summer monsoon rainfall (ISMR). Simulation of interannual variability of the Eurasian snow and its teleconnection with the ISMR are quite reasonable in the model. Using composite analysis it is shown that a positive snow anomaly, which is comparable to the systematic bias in the model, results into significant decrease in the summer monsoon rainfall over the central India and part of the Equatorial Indian Ocean. Decrease in the summer monsoon rainfall is also found to be linked with weaker northward propagation of intraseasonal oscillation (ISO). A barotropic stationary wave triggered by positive snow anomaly over west Eurasia weakens the upper level monsoon circulation, which in turn reduces the zonal wind shear and hence, weakens the northward propagation of summer monsoon ISOs. A sensitivity experiment by reducing snow fall over Eurasian region causes decrease in winter and spring snow depth, which in turn leads to decrease in Indian summer monsoon rainfall. Results from the sensitivity experiment corroborate with those of composite analysis based on long free run. This study suggests that further improvements in the snow parametrization schemes as well as Arctic sea ice are needed to reduce the Eurasian snow bias during winter/spring, which may reduce the dry bias over Indian sub-continent and hence predictability aspect of the model.  相似文献   

12.
Weakening of Indian summer monsoon in recent decades   总被引:13,自引:3,他引:10  
The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.  相似文献   

13.
为了研究大尺度背景场对ENSO和印度夏季风降水关系的调制作用,更好地预报气候变暖背景下印度夏季风降水的年际变化,本文利用重建的10套ENSO指数和印度降水资料,研究了ENSO和印度夏季风降水在过去500 a(1470-1999年)中的关系,其存在的原因以及如何理解这一现象,主要侧重于ENSO对印度夏季风的影响.结果 表...  相似文献   

14.
印度夏季风的减弱及其与对流层温度的关系   总被引:4,自引:0,他引:4       下载免费PDF全文
对43aNCEP/NCAR再分析资料和台站实际观测资料的分析,揭示了对流层温度变化和印度夏季风环流减弱之间的联系。印度夏季风的变化与东亚上空对流层温度具有密切的关系,主要表现为对流层平均温度与整个印度夏季降雨和季风环流强度之间存在显著的正相关。结果表明:印度夏季风环流在近几十年经历了两次减弱过程,第一次减弱约发生在20世纪60年代中期,第二次减弱则发生在20世纪70年代后期;通过改变海陆热力对比,对流层平均温度在印度夏季风减弱过程中可能起着重要作用,东亚地区与东印度洋至西太平洋热带地区之间的对流层温度差异导致了印度夏季风环流的减弱。  相似文献   

15.
The weakening relationship of El Nino with Indian summer monsoon reported in recent years is a major issue to be addressed. The altered relationships of Indian monsoon with various parameters excite to search for other dominant modes of variability that can influence the precipitation pattern. Since the Indian summer monsoon circulation originates in the oceanic region of the southern hemisphere, the present study investigates the association of southern extratropical influence on Indian summer monsoon using rainfall and reanalysis parameters. The effect of Southern Annular Mode (SAM) index during the month of June associated with the onset phase of Indian summer monsoon and that during July–August linked with the active phase of the monsoon were analysed separately for a period from 1951 to 2008. The extra-tropical influence over the monsoon is illustrated by using rainfall, specific humidity, vertical velocity, circulation and moisture transport. The June high SAM index enhances the lower level wind flow during the onset phase of monsoon over Indian sub-continent. The area of significant positive correlation between precipitation and SAM in June also shows enhancement in both ascending motion and specific humidity during the strong phase of June SAM. On the other hand, the June high SAM index adversely affects July–August monsoon over Indian subcontinent. The lower level wind flow weakens due to the high SAM. Enhancement of divergence and reduction in moisture transport results in the Indian monsoon region due to the activity of this high southern annular mode. The effect is more pronounced over the southwest region where the precipitation spell has high activity during the period. Significant correlation exists between SAM and ISMR, even after removing the effect of El Nino. It indicates that the signals of Indian summer monsoon characteristics can be envisaged to a certain extend using the June SAM index.  相似文献   

16.
In this study the potential impact of the anticipated increase in the greenhouse gas concentrations on different aspects of the Indian summer monsoon is investigated, focusing on the role of the mechanisms leading to these changes. Both changes in the mean aspects of the Indian summer monsoon and changes in its interannual variability are considered. This is done on the basis of a global time-slice experiment being performed with the ECHAM4 AGCM at a high horizontal resolution of T106. The experiment consists of two 30-year simulations, one representing the present-day climate (period: 1970–1999) and one representing the future climate (period: 2060–2089). The time-slice experiment predicts an intensification of the mean rainfall associated with the Indian summer monsoon due to the general warming, while the future changes in the large-scale flow indicate a weakening of the monsoon circulation in the upper troposphere and only little change in the lower troposphere. The intensification of the monsoon rainfall in the Indian region is related to an intensification of the atmospheric moisture transport into this region. The weakening of the monsoon flow is caused by a pronounced warming of the sea surface temperatures in the central and eastern tropical Pacific and the associated alterations of the Walker circulation. A future increase of the temperature difference between the Indian Ocean and central India as well as a future reduction of the Eurasian snow cover in spring would, by themselves, lead to a strengthening of the monsoon flow in the future. These two mechanisms compensate for the weakening of the low-level monsoon flow induced by the warming of the tropical Pacific. The time-slice experiment also predicts a future increase of the interannual variability of both the rainfall associated with the Indian summer monsoon and of the large-scale flow. A major part of this increase is accounted for by enhanced interannual variability of the sea surface temperatures in the central and eastern tropical Pacific.  相似文献   

17.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

18.
The time and space variations of the ten-day mean surface sensible heat flux have beenanalyzed in this paper based on the data of NCEP/NCAR from January of 1979 to December of1995 in the South China Sea(SCS)monsoon region.It is found that large variations of the surfacesensible heat flux standard deviations exist in the northwestern Indochina Peninsula and the IndianPeninsula regions,and their locations and strength change significantly during the onset period ofSCS monsoon.The negative deviations appear evidently earlier in the Indocbina Peninsula than inthe Indian Peninsula but the deviation strength in the Indian Peninsula is stronger than that in theIndochina Peninsula.The appearance of the zonal negative mean deviations in the southern part ofthe Indochina Peninsula corresponds to the date of the SCS summer monsoon onset,while theoccurrence of the deviation decrease corresponds to the date of the South Asian monsoon onset.The sensible heat flux increases dekad by dekad before the onset of the summer monsoon in theIndian Peninsula and the Indochina Peninsula and decreases after the monsoon onset.Therefore,the surface sensible heat flux changes in the Indochina and the Indian Peninsula regions maybe havesome connections with the SCS monsoon onset and the Indian monsoon onset,and the IndochinaPeninsula maybe becomes the sensitive or key region to the SCS monsoon onset and the land maybeplays an important role in triggering summer monsoon onset.  相似文献   

19.
诊断分析了北半球夏季来自印度季风的水汽输送与东亚上空水汽输送的关系,发现二者之间具有反相变化的特征。印度季风水汽输送偏强(偏弱)时,东亚上空的水汽输送偏弱(偏强),长江中下游降水偏少(偏多)。印度夏季风水汽输送与西太平洋副热带高压强度有显著的相关关系,印度季风水汽输送偏强(偏弱)时,西太平洋副热带高压强度偏弱(偏强),由此导致副高西侧东亚上空向北的水汽输送减弱(增强),使得长江中下游降水偏少(偏多)。对反映热带对流活动的外逸长波辐射(OLR)的分析表明,印度洋上空的对流加热异常不仅能够显著地影响印度季风,也可能对东亚季风产生直接的影响。  相似文献   

20.
亚洲夏季风建立前后对流层温度场演变特征及其热力成因   总被引:5,自引:1,他引:4  
对1996年亚洲夏季风爆发前后(3~6月)印度及南海季风区对流层温度演变特征及其热力成因作了比较分析。结果表明:印度和南海夏季风的爆发与各季风区对流层中上层南北温差逆转密切相关,而南北温差逆转是由10~30°N之间纬度带对流层的季节性增暖引起的。夏季风爆发前期,南海季风区的增温主要由暖平流及非绝热加热过程(主要为凝结潜热)共同作用所致。春季在印度季风区大陆上空存在显著的下沉绝热增温,使得对流层中上层的增温率比华南大陆及邻近地区上空的增温率显著得多。但印度季风区冬末春初的南北温差(南暖北冷)也非常明显,以至该地区对流层中上层增暖到引起南北温差发生逆转的时间较迟,而南海季风区对流层中层南北温差发生逆转的时间相对要早,因而印度夏季风比南海夏季风迟爆发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号