首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula-South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.  相似文献   

2.
根据1973—1979年5—8月美国国家气象中心的网格点资料,分析了亚洲南部在夏季风暴发前后对流层风场的变化。我们发现在亚洲南部的夏季风系统中有两个子系统,即东亚季风和印度季风。各个季风子系统各自有它的成员,这些成员在夏季风暴发前后都经历显著的变化。在东亚季风系统中受中纬度影响比在印度季风系统更强烈,其成员也比印度季风系统复杂。而在季风暴发前后各个成员的变化、印度季风系统比东亚季风系统更显著。  相似文献   

3.
有关东亚夏季风北边缘的定义及其特征   总被引:9,自引:1,他引:8  
采用欧洲中心(ECMWF)44年冉分析(ERA40)日总可降水量(TPW)资料,用标准化可降水量指数(NPWI)定义了夏季风北边缘,并进一步研究了亚洲夏季风北边缘的气候特征及其年际、年代际变化特征.结果表明,用标准化町降水量指数定义的夏季风北边缘在哑洲可以确定出印度夏季风系统和东亚夏季风系统;就夏季风北边缘的平均位置而言,其在100°E以西沿青藏高原南侧呈东一西走向,年际变化极小;在100°E以东呈东北-西南走向,从青藏高原东侧北上经西北地区东部、华北地区北部、东北地区西部延伸到东北亚地区,并存在明显的年际、年代际变化.  相似文献   

4.
利用NCAR CAM3.1模式及NCEP/NCAR(version 1)再分析资料计算了几种现实大气热源分布情况,讨论了亚洲各地区和南半球上空冬季1月大气冷(热)源对东亚冬季风环流系统和印度冬季风环流系统形成的影响.结果表明:(1)冬季1月东亚地区和澳大利亚上空大气冷(热)源与东亚冬季风环流关系密切,南半球澳大利亚附近的非绝热加热可以激发出澳大利亚北部的热低压系统,东亚大陆东部的大气冷源可以使东亚大陆低空出现冷高压,基本上模拟出东亚季风系统冬季主要环流成员;(2)亚洲地区西部及其对应的南半球印度洋非绝热加热与印度冬季风环流关系密切,同样对东亚冬季风也有一定的影响,特别是亚洲大陆西部副热带地区的非绝热加热可以加强冬季南海的越赤道气流并能调整阿留申低压的位置.  相似文献   

5.
东亚季风系统的动力过程和准定常行星波活动的研究进展   总被引:14,自引:5,他引:9  
陈文  顾雷  魏科 《大气科学》2008,32(4):950-966
本文系统地回顾了近几年来关于东亚季风系统的动力过程与机理方面的研究,特别是关于东亚季风系统年际和年代际变异与准定常行星波活动关系的研究。最近的许多研究表明东亚夏季风系统变异的动力过程主要与东亚/太平洋型(即EAP型)遥相关有关,利用EAP型遥相关理论不仅可以说明东亚夏季风系统各成员之间内在联系的机理,而且可以揭示热带西太平洋热力和菲律宾周围对流活动影响东亚夏季风系统季节内、年际变化及其异常的经向三极子结构的动力过程;除了EAP型遥相关外,研究还表明北半球夏季从北非到东亚的对流层上层经向风异常存在一个沿急流传播的遥相关型,它对东亚夏季风系统异常的经向三极子型分布也有重要影响。并且,最近关于东亚冬季风变异与行星波活动的关系已做出许多研究,并获得很大进展。这些研究表明:北半球冬季准定常行星波传播波导在年际和年代际变化上存在着反相振荡特征,即若“极地波导”加强,则“低纬波导”将减弱,反之亦然;准定常行星波两支波导的反相振荡与北半球环状模(NAM)的年际和年代际振荡有紧密联系,而NAM的变化通过行星波活动的异常可以导致东亚冬季风的年际和年代际变化;此外,准定常行星波活动的年际变化与东亚冬季风异常之间的关系明显地受热带平流层纬向风准两年周期振荡(QBO)的调制,进一步的研究还提出了可能的机理。最后本文还指出:2005~2007年冬季东亚冬季风的异常不仅与西伯利亚高压和阿留申低压的变异有关,而且与极涡的演变和准定常行星波活动密切相关。  相似文献   

6.
亚洲—太平洋夏季风系统的基本模态特征分析   总被引:5,自引:1,他引:4  
刘芸芸  丁一汇 《大气科学》2012,36(4):673-685
亚洲—太平洋季风区各季风子系统间的相互作用对季风区甚至全球的气候变化都有着显著的影响.整个亚洲—太平洋夏季风系统都处于高层辐散、低层辐合的庞大辐散环流中,从高层辐散中心流出的三支气流分别对推动印度夏季风、东亚副热带夏季风和南海夏季风起着重要的作用,很好地表现了亚洲—太平洋夏季风系统的整体性特征.季风区多种气象要素的基本模态在年代际和年际尺度上都表现出较为一致的变化特征:年代际尺度上亚洲—太平洋夏季风系统整体呈现减弱趋势;年际尺度上存在准2年和准4年的两个周期,其中准2年振荡特征表现为若印度西南季风偏强,则印度季风雨带偏强偏北,导致印度大陆中北部地区降水偏多;同时,由于西太平洋副热带高压的北移和偏强的印度西南季风显著向东延伸,10°N~30°N范围内的西北太平洋地区则表现为异常的气旋性环流,而30°N~50°N之间为反气旋性环流异常,对应东亚夏季风偏强,季风雨带能够北推至我国华北地区.也就是说,当亚洲夏季风中某一季风子系统表现为异常偏强时,另一季风子系统在这一年中也将表现为异常偏强,反之亦然.准2年的振荡周期可能是亚洲—太平洋夏季风系统的一种固有振荡,它从年际尺度上反映了亚洲—太平洋夏季风受热带太平洋—印度洋海温的强迫表现出明显的整体一致特征.  相似文献   

7.
The East Asian summer monsoon: an overview   总被引:38,自引:1,他引:38  
Summary The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at intraseasonal, interannual and interdecadal time scales. Their interaction, i.e., phase locking and in-phase or out-phase superimposing, can to a greater extent control the behaviors of the East Asian summer monsoon and produce unique rythem and singularities. (5) Two external forcing i.e., Pacific and Indian Ocean SSTs and the snow cover in the Eurasia and the Tibetan Plateau, are believed to be primary contributing factors to the activity of the East Asian summer monsoon. However, the internal variability of the atmospheric circulation is also very important. In particular, the blocking highs in mid-and high latitudes of Eurasian continents and the subtropical high over the western North Pacific play a more important role which is quite different from the condition for the South Asian monsoon. The later is of tropical monsoon nature while the former is of hybrid nature of tropical and subtropical monsoon with intense impact from mid-and high latitudes.  相似文献   

8.
亚洲季风区地面感热通量的区域变化特征   总被引:1,自引:0,他引:1  
采用1979-1995年(缺1986、1987、1993)NCEP/NCAR再分析资料中的逐旬感热通量资料,对亚洲季风区地面感热通量的空间结构及时间演变进行了旋转经验正交函数(REOF)分析。结果表明:印度半岛和中南半岛地区感势通量的变化与亚洲季风的爆发及演变有密切关系,是季风爆发的主要关键区。这两个地区的感热积累是东亚季风爆发的触发因素之一,尤其是印度半岛北部感热通量的突变对印度夏季风演变十分重要。印度半岛北部与青藏高原西部的热力差异在季风的爆发和维持中占有重要地位。而东北亚与西北太平洋的热力差异只对东亚夏季风的演变有影响,与冬季风则无直接关联。在东亚季风的爆发中居主导地位的还是印度半岛北部和青藏高原西北部的感热加热作用。  相似文献   

9.
Based on the daily NCEP/NCAR reanalysis dataset from 1980 to 1997, the zonal propagations of 850 hPa kinetic energy (KE) and meridional wind (v) at equatorial region are examined respectively. Results show that the strongest center of KE in the tropical Asian monsoon region is located at 75°-90°E, with the secondary over the Somalia low-level jet channel, i.e., about 50°E. East to 90°E, disturbances of both KE and v observed are mainly coming from the western Pacific Ocean and propagating westward to the Bay of Bengal (BOB) passing through the South China Sea. But the propagation directions of both KE and v are rather disorderly between the BOB and the Somalia jet channel. Therefore, the East Asian summer monsoon and the Indian summer monsoon are different in the propagating features of the disturbances of KE and v. Above facts indicate that East Asian monsoon system exists undoubtedly even at the equatorial region, and quite distinct from the Indian monsoon system, it is mainly affected by the disturbances coming from the tropical western Pacific rather than from the Indian monsoon region. The boundary of the two monsoon systems is around 95°-100°E, which is more westward than the counterpart as proposed in earlier studies by 5-10 degrees in longitude.  相似文献   

10.
杨崧  邓开强  段晚锁 《大气科学》2018,42(3):570-589
本文主要基于对Webster and Yang(1992)一文的回顾,讨论了年循环在季风和ENSO相互作用中的作用、春季预报障碍(SPB)、Webster-Yang指数(WYI)、以及亚洲夏季风的前期讯号等内容。亚洲季风和ENSO作为全球天气和气候变率的主要来源,它们之间的相互作用存在明显的年变化和季节“锁相”特征:在北半球秋冬季,亚洲季风对流活动最弱,此时ENSO的信号最强;但是到了北半球春季,亚洲季风对流快速爆发,而此时的ENSO信号却迅速衰减。亚洲季风和ENSO位相的错位变化使得热带海—气系统的不稳定性在北半球春季达到最大,此时任意一个微小的扰动都容易快速增长,最终导致基于ENSO的预报技巧减小。亚洲夏季风环流本质上可以看成是大气对副热带地区潜热加热的低频罗斯贝波响应,它具有很强的垂直风切变,这是WYI定义的物理基础。WYI数值越大,代表垂直东风切变越大,即亚洲季风环流增强,反之亦然。利用WYI与前期大气环流场、欧亚雪盖、土壤湿度等物理量进行回归分析,结果表明:当亚洲夏季风增强时,前期冬季和春季,在北印度洋和亚洲副热带地区上空出现东风异常,同时在更高纬度地区伴随出现西风的异常;此外,副热带地区如印度次大陆、中南半岛和东亚的土壤湿度增大;中纬度地区尤其是青藏高原中西部的积雪密度明显减小。这些前期讯号的发现有助于我们构建动力统计模型,进而提高对亚洲夏季风的季节预报水平。  相似文献   

11.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

12.
利用ECMWF所分析的1980~1989年每日各层的水汽和风场资料分析了东亚季风区夏季风的水汽输送特征,并与印度季风区夏季水汽输送进行比较。分析结果表明了东亚季风区夏季水汽输送特征明显不同于印度季风区夏季水汽输送,东亚季风区夏季水汽输送经向输送要大于纬向输送,而印度季风区夏季水汽输送则以纬向输送为主。分析结果还表明东亚季风区由于夏季水汽分布是南边大、北边小,偏南季风气流所引起的水汽平流是湿平流。因此,水汽的辐合主要由季风气流所引起的水汽平流所造成,而印度季风区季风气流所引起的水汽平流是干平流,它利于水汽输送的辐散,水汽的辐合主要是由于风场的辐合所造成。  相似文献   

13.
In terms of the NCAR Community Climate Model (CCM3),the effect of the Indian Peninsulaon the course of the Asian tropical summer monsoon is simulated in this paper,and numericalexperimental results show that the Indian Peninsula plays a critical role in the establishmentprocess of the Asian tropical summer monsoon.When the CCM3 includes the Indian Peninsula,the model successfully simulates out the course of the Asian tropical summer monsoon,i.e.theSouth China Sea (SCS) summer monsoon at first bursts in middle May,while the Indian monsoonjust establishes until middle June.However when the Indian Peninsula topography is deleted in themodel,the Indian and SCS summer monsoons almost simultaneously establish in late May.Numerical results further indicate that in the former experiment the sensible heating of the IndianPeninsula warms the air above and produces evident temperature contrast between the peninsulaand its adjacent SCS and Bay of Bengal (BOB).which results in the strengthening and maintenanceof the BOB trough in the low-middle layer of the troposphere in the end of spring and early summerand thus the earliest establishment of the Asian tropical summer monsoon in the SCS in middleMay.However,the Indian summer monsoon just establishes until middle June when the strongwest wind over the Arabian Sea shifts northwards and cancels out the influence of the northwestflow behind the BOB trough.In the latter experiment the effect of Tibetan Plateau only produces avery weak BOB trough,and thus the SCS and Indian summer monsoons almost simultaneouslyestablish.  相似文献   

14.
In terms of the NCAR Community Climate Model (CCM3),the effect of the Indian Peninsula on the course of the Asian tropical summer monsoon is simulated in this paper,and numerical experimental results show that the Indian Peninsula plays a critical role in the establishment process of the Asian tropical summer monsoon.When the CCM3 includes the Indian Peninsula,the model successfully simulates out the course of the Asian tropical summer monsoon,i.e.the South China Sea (SCS) summer monsoon at first bursts in middle May,while the Indian monsoon just establishes until middle June.However when the Indian Peninsula topography is deleted in the model,the Indian and SCS summer monsoons almost simultaneously establish in late May.Numerical results further indicate that in the former experiment the sensible heating of the Indian Peninsula warms the air above and produces evident temperature contrast between the peninsula and its adjacent SCS and Bay of Bengal (BOB).which results in the strengthening and maintenance of the BOB trough in the low-middle layer of the troposphere in the end of spring and early summer and thus the earliest establishment of the Asian tropical summer monsoon in the SCS in middle May.However,the Indian summer monsoon just establishes until middle June when the strong west wind over the Arabian Sea shifts northwards and cancels out the influence of the northwest flow behind the BOB trough.In the latter experiment the effect of Tibetan Plateau only produces a very weak BOB trough,and thus the SCS and Indian summer monsoons almost simultaneously establish.  相似文献   

15.
By using daily total precipitable water(TPW) amount from the ECMWF reanalysis(ERA-44a) data in 1958-2001,the north edge of the Asian sub-tropical summer monsoon is defined by a normalized precipitable water index(NPWI),and its climatology and interannual/interdecadal variability are examined.The results show that two monsoon systems(the Indian and East Asian monsoon systems) can be identified in terms of monsoon edge defined by the NPWI over Asia.The mean north edge goes in the west-east direction along ...  相似文献   

16.
Evolution of Asian Summer Monsoon and the Slowly Varying Disturbances   总被引:3,自引:0,他引:3  
卢佩生EvolutionofAsianSummerMonsoonandtheSlowlyVaryingDisturbances¥LuPeisheng(InstituteofAtmosphericPhysics,ChineseAcademyofScie...  相似文献   

17.
In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.  相似文献   

18.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989. With the aid of EOF analysis method, temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied. The results show that there is apparent seasonal transition of moisture sink and water vapor transport between Asian monsoon region and Australian monsoon region. In winter, the Asian monsoon region is a moisture source, in which three cross-equatorial water vapor transport channels in the "continent bridge". at 80°E and 40°E ~ 50°E transport water vapor to the Australian monsoon region and southern Indian Ocean which are moisture sinks. In summer, Australian monsoon region and southern Indian Ocean are moisture sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink. In spring and autumn, ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

19.
亚洲季风降水的多模式模拟结果分析   总被引:2,自引:2,他引:0  
利用参加政府间气候变化委员会(IPCC)第四次评估报告(AR4)的多个大气模式(包括中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室新发展的全球格点大气模式GAMIL)的AMIP-II(大气模式比较计划-II)积分的集合平均结果(MMEA),研究了当前大气模式对亚洲季风降水的平均模拟能力,同时也评估了GAMIL的模拟水平。对多年平均冬夏季降水的模拟研究发现:MMEA和GAMIL对冬季降水的模拟好于夏季。与以往的结果相比,MMEA对夏季印度洋和西太平洋地区降水的模拟改进不明显;部分模式能够模拟出夏季东亚副热带地区从中国东海到中太平洋的带状梅雨降水,但大部分模式的模拟强度还不够。可以看出GAMIL除了冬季印度洋和夏季菲律宾模拟的降水稍弱外,与MMEA的结果很接近。降水场的误差与环流场的误差对应。此外,作者还研究了降水的年际变化和季风爆发撤退过程的模拟能力。MMEA与观测在印度季风区降水的相关系数不如在东亚热带和东亚副热带季风区的好。各模式冬季的相关系数一般好于夏季,特别是东亚热带季风区冬季的相关系数普遍较高,而印度季风区夏季的相关系数普遍较低。MMEA对标准差的模拟并不总比单个模式的好。各个模式对东亚热带季风区冬季的降水距平同号率和降水距平百分率模拟得最好。季风爆发、撤退时降水推移的模拟也还有待于进一步提高。  相似文献   

20.
ENSO对亚洲夏季风环流和中国夏季降水影响的诊断研究   总被引:26,自引:2,他引:24  
刘颖  倪允琪 《气象学报》1998,56(6):681-691
文中以SVD分析技术为基础,发展了一种用以提取一个矢量场和一个标量场耦合信号的统计诊断方法——联合SVD方法(简记为CSVD),并运用CSVD分析了ENSO对亚洲季风环流系统及中国夏季降水的年际变化的影响。结果表明,在ElNino年,印度夏季风减弱,东亚夏季风增强;而在LaNina年,印度夏季风增强,东亚夏季风减弱。且ENSO对亚洲夏季风环流影响显著的区域主要在长江流域南北气流交汇区和索马里急流区,而对中国夏季降水影响最显著的区域则在江淮流域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号