首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ridge segments and fracture zones from the American-Antarctic Ridge have been systematically dredge sampled from 4° W to 18° W. Petrographic studies of the dredged basalts show that the dominant basalt variety is olivine-plagioclase basalt, although olivine-plagioclase-clinopyroxene basalt is relatively common at some localities. Selected samples have been analysed for major and trace elements, rare earth elements and Sr and Nd isotopes. These data show that the majority of samples are slightly evolved (Mg#=69-35) N-type MORB, although a small group of samples from a number of localities have enriched geochemical characteristics (T- and P-type MORB).These different types of MORB are readily distinguished in terms of their incompatible trace element and isotopic characteristics: N-type MORB have high Zr/Nb (17–78), Y/Nb (4.6–23) and 143Nd/144Nd (0.51303–0.51308) ratios, low Zr/Y (2.2–4.2) and 87Sr/86Sr (0.70263–0.70295) ratios and have (La/Sm)N<1.0; T-type MORB have lower than chondritic Zr/Nb ratios (8.8–15.5), relatively low Y/Nb (1.9–4.3) and 143Nd/144Nd (0.51296–0.51288) ratios and relatively high Zr/Y (3.1–4.7), 87Sr/86Sr (0.70307–0.70334) and (La/Sm)N (1.1–1.5) ratios; the single sample of P-type MORB has low Zr/Nb (6.3), Y/Nb (0.9) and 143Nd/144Nd (0.51287) ratios and high Zr/Y (7.1), 87Sr/86Sr (0.70351) and (La/Sm)N (2.4) ratios. The geochemical characteristics of this sample are essentially identical to those of the Bouvet Island lavas.Geochemically enriched MORB are less abundant on the American-Antarctic Ridge than on the Southwest Indian Ridge but their geochemical characteristics are identical. The compositions of T- and P-type MORB are consistent with a regional mixing model involving normal depleted mantle and Bouvet plume type magma. On a local scale the composition of T-type MORB is consistent with derivation from depleted mantle which contains 4% veins of P-type melt.We propose a model for the evolution of the American-Antarctic Ridge lavas in which N-type MORB is derived from mantle with negligible to low vein/mantle ratios, T-type MORB is derived from domains with moderate and variable vein/mantle ratios and P-type MORB from regions with very high vein/mantle ratios where vein material comprises the major portion of the melt. The sparse occurrence of enriched lavas and by implication enriched mantle beneath the American-Antarctic Ridge, some distance (500–1,200 km) from the Bouvet plume location, is interpreted to be the result of lateral dispersion of enriched mantle domains by asthenospheric flow away from the Bouvet mantle plume towards the American-Antarctic Ridge.  相似文献   

2.
Geochemical and Nd-Sr-Pb-O isotope data for a suite of syn-collisional (ca. 520 Ma) syenites associated with a major shear zone in the Proterozoic Damara orogen (Namibia) constrain their sources and petrogenesis. Major rock types from within and outside the shear zone range from highly potassic nepheline syenites to quartz syenites and were primarily generated by fractional crystallization from a mantle-derived alkaline magma. Even the most primitive samples show pronounced depletion in Nb, Ti, Sr and P on a primitive mantle-normalized diagram, indicating the involvement of a recycled crustal component in the source. Extrapolation of the Sr-Nd-Pb-O isotope composition of the syenites from within the shear zone back to a hypothetical parental melt with 10 wt% MgO suggests derivation from a moderately enriched lithospheric upper mantle (87Sr/86Sr: 0.705, Nd: –2, 18O: 6, 206Pb/204Pb: 19.40, 207Pb/204Pb: 15.82). More evolved quartz syenites show increasing 87Sr/86Sr ratios, increasing 18O values but less radiogenic Nd values and Pb isotopes with decreasing MgO, indicating assimilation of ca. 10% Archaean to Proterozoic local lower crust with unradiogenic Nd, high 87Sr/86Sr and low U/Pb. For samples from outside the shear zone a hypothetical parental melt with 10 wt% MgO has distinctly more radiogenic Sr but less radiogenic Nd isotopic composition (87Sr/86Sr: 0.712, Nd: –13), with strongly unradiogenic Pb isotope ratios (206Pb/204Pb: 17.40, 207Pb/204Pb: 15.50), suggesting another strongly enriched lithospheric mantle source for these rocks. Differentiated syenites from outside the shear zone show decreasing 87Sr/86Sr, increasing 18O values, more radiogenic Nd values and Pb isotope ratios with decreasing MgO indicating interaction with a lithospheric component with low Rb/Sr but high Sm/Nd and U/Pb.  相似文献   

3.
A detailed isotopic study of minerals and whole rocks from the Cretaceous Oka complex, Quebec, Canada, shows a very small variation in initial Nd and Sr isotopic compositions. Assuming an age of 109 Ma for the complex, apatite, calcite, garnet, melilite, monticellite, olivine and pyroxene and whole rocks yield a range for initial 87Sr/86Sr of 0.70323–0.70333; and for initial 143Nd/144Nd of 0.51271–0.51284 ( SR(T)= –14.8 to –16.2; Nd(T)=+4.1 to +6.6). The negative SR and positive Nd indicate derivation of the Nd and Sr from a source with a time-integrated depletion in the large-ion lithophile (LIL) elements. This agrees with data from other Canadian carbonatites and confirms that a large part of the Canadian Shield is underlain by a source region depleted in the LIL elements. The new data from Oka suggest that the depleted source may have remained coupled to the continental crust until recent time.  相似文献   

4.
Greenstone, blueschist and eclogite metabasaltic blocks from the Franciscan complex of California preserve extensive petrographic and chemical evidence for interaction with hydrous fluids at high-P, low-T metamorphic conditions. The Nd and Sr isotope variations within and among the blocks constrain the origin of the basaltic protoliths, the nature of the fluid metasomatism that occurred within the upper levels (15–45 km) of the paleosubduction zonc, and the character and provenance of the rock that generated the hydrous fluids within the paleosubduction zone. Samples with little or no petrographic evidence of retrograde alteration and unaltered garnet separates have Nd. With increasing degrees of retrograde alteration, Nd isotope compositions are consistently lower, ranging down to Nd(160)=5. Actinolitic alteration rinds which are present on some blocks have the least radiogenic compositions with Nd=1.6 to 6.1. While Nd isotope compositions of unaltered blockes are in the range expected for basalt derived from normal depleted mantle, the Sr isotope compositions are more radiogenic ranging from Sr(160)=–5 to +11. Compositions of unaltered eclogite and blue-schist blocks are consistent with a protolith origin in normal oceanic crust derived from depleted mantle. The Sr isotopy systematics indicate that the protoliths were modified by seawater alteration in an ocean-floor hydrothermal system. Isotopic compositions of samples from parts of blocks that have a retrograde metamorphic overprint show a strong correlation between less radiogenic Nd compositions and the extent of retrograde metamorphism. Maximum Nd isotope ratios of the metasomatizing fluid are provided by analyses of actinolitic rinds, and range from Nd(160)=1.6 to 6.1. A possible source for fluids of this composition is subducted sediment that was derived from a continental craton. Because rind formation occurred while the basaltic blocks were within an ultramafic matrix, the fluids must have migrated from sediments in the accretionary wedge into an overlying wedge of mantle material imbricated with blocks of oceanic crust. This suggests possibly km-scale movement of fluids that carry an amount of the rare-earth elements sufficient to significantly modify the trace-element budget of subducted basalt.  相似文献   

5.
Sr- and Pb-isotope data from the Calabozos center (87Sr/86Sr= 0.7043, 206Pb/204Pb=18.64–18.66, 207Pb/204Pb=15.59–15.60, 208Pb/204Pb=38.52–38.55) fall within the range of values reported for the southern volcanic zone (33–42° S) of the Andean arc. The range of 18O (5.0–6.3), however, includes unusually low values compared to volcanic rocks of similar bulk composition in the region. The Calabozos caldera complex lies at 35 °30 S, where the continental crust under the Andes thins southward from >45 to 30 km. Three voluminous late Pleistocene ashflow tuffs, collectively called the Loma Seca Tuff, constitute the bulk of >1,000 km3 of eruptive products at the Calabozos caldera complex and are evidence for a major, longlived andesitic-to-rhyodacitic magma reservoir at shallow crustal levels. The 18O values of the most evolved volcanic rocks from the Calabozos center are lower than predicted for rhyodacite produced by crystal fractionation from basalt typical of the region. Variation of 18O independent of bulk composition and inferred magmatic water contents indicates that the 18O depletion is a late-stage, upper-crustal phenomenon that cannot simply be attributed to magmatic interaction with meteoric water. The data are interpreted to be the result of assimilation of 5–30% of roof and wall rocks previously depleted in 18O by isotopic exchange in a meteoric hydrothermal system overlying the magma reservoir. Combined assimilation and fractional crystallization calculations applied to Sr isotope data show that the isotopic contrast between the Calabozos magmas and the assimilated rocks is very small. Hydrothermally-altered volcanic and plutonic rocks from the Tertiary Andean arc complex and Mesozoic-to-Cenozoic volcaniclastic sediments typical of the local basement provide a geologically reasonable contaminant compatible with the Sr- and O-isotope data. Pb-isotope data from the Calabozos system lend no significant insight into upper crustal contamination.  相似文献   

6.
This paper deals with barite from stratiform, karst, and vein deposits hosted within Lower Paleozoic rocks of the Iglesiente-Sulcis mining district in southwestern Sardinia. For comparison sulfates from mine waters are studied. Stratiform barite displays 34S=28.8–32.1, 18O=12.7–15.6, and 87Sr/86Sr=0.7087, in keeping with an essentially Cambrian marine origin of both sulfate and strontium. Epigenetic barite from post-Hercynian karst and vein deposits is indistinguishable for both sulfur and oxygen isotopes with 34S=15.3–26.4 and 18O=6.6–12.5; 87Sr/86Sr ratios vary 0.7094–0.7140. These results and the microthermometric and salinity data from fluid inclusions concur in suggesting that barite formed at the site of mineralization by oxidation of reduced sulfur from Cambrian-Ordovician sulfide ores in warm, sometimes hot solutions consisting of dilute water and saline brine with different 18O values. The relative proportion of the two types of water may have largely varied within a given deposit during the mineralization. In the karst barite Sr was essentially provided by carbonate host rocks, whereas both carbonate and Lower Paleozoic shale host rocks should have been important sources for Sr of the vein barite. Finally, 34S data of dissolved sulfate provide further support for the mixed seawater-meteoric water composition of mine waters from the Iglesiente area.  相似文献   

7.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

8.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

9.
Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (Na–Li, Mg–Li). Estimates obtained for the Taman and Kakhetia regions are similar and range from 45 to 170°, which correspond to depths of 1–4.5 km. The calculated temperatures correlate with the chemical (Li, Rb, Cs, Sr, Ba, B, I, and HCO3) composition of water and 13 (2) and 13 (CH4) values in spontaneous gases. The isotope values indicate that mechanisms of the formation of 13-rich gases, i.e., gases with high 13 values (up to +16.0 in 2 and –23.4 in CH4) in mud-volcanic systems of Taman and Kakhetia are governed by fluid-generation temperatures rather than the supply of abyssal gases. The 11 value was determined for the first time in mud-volcanic products of the Caucasus region. This value ranges from +22.5 to +39.4 in the volcanic water of Georgia, from –1.2 to +7.4 in the clayey pulp of Georgia, and from –7.6 to +13.2 in the clayey pulp of Taman. It is shown that the 11 value in clay correlates with the fluid-generation temperature and 11 correlates with 13 in carbon-bearing gases. These correlations probably testify to the formation of different phases of mud-volcanic emanations in a single geochemical system and suggest the crucial role of temperature in the development of isotope-geochemical features.  相似文献   

10.
Carbon and oxygen isotope analyses were made of representative samples of calcite and quartz from the carbonate deposits in the Tolfa Mountains mining district. Measurements were also made of hydrogen isotope compositions, filling temperatures and salinities of fluid inclusions in these minerals. There are three stages of mineralization at Tolfa. In stage I, characterized by calc-silicate hornfels, the carbonates have relatively high 18O values of 14.5 to 21.6 suggesting a rather low water/rock ratio. 13C values of –0.3 to 2.1 indicate that appreciable decarbonation or introduction of deep-seated carbon did not occur. Stage II is marked by phanerocrystalline carbonates; 18O values of 13.1 to 20.0 and 13C values of 0.7 to 5.0 identify them as hydrothermal veins rather than marbles. D values of –56 to –50 for inclusion fluids suggest a possible magmatic component to the hydrothermal fluid. Filling temperatures of coarse-grained samples of Calcite II are 309° to 362° C with a salinity range of 5.3 to 7.1 weight percent NaCl. Calculated 18O values of 11–12 for these fluids are again indicative of low water/rock ratios. The sparry calcites of stage III have 18O and 13C values of 8.1 to 12.9 and –1.7 to 3.2, respectively. D values of inclusion fluids are –40 to –33, clearly heavier than in earlier stages and similar to values of modern local ground waters. A salinity measurement of <0.1 weight percent NaCl in a sample of Calcite III is compatible with a relatively unaltered ground water origin for this fluid. Precipitation of the sparry calcite took place at much lower temperatures, around 160° C. For quartz, 18O values of 9.3 to 12.4 and D values for inclusions of –53 to –28 are consistent with its late occurrence and paragenetic link with associated carbonates.  相似文献   

11.
Six diverse intrusive igneous types are exposed as discrete outcrops within an area of 900 km2 in the southern Snake Range, White Pine County, Nevada. The previously recognized variety among these igneous types is reflected in the wide range of 18O values (–1.1 to 13.4 permil) found in these rocks. This range of 18O values probably results from differences in source material and post-crystallization history of the different intrusive types.The Jurassic intrusive of the Snake Creek-Williams Canyon area represents the chemical equivalent of a large part of a differentiation sequence, with the entire range of composition (63–76 percent SiO2) exposed over a horizontal distance of about five km. The rather regular increase of 18O values from the most mafic to the most felsic parts of this pluton, together with 18O values determined for constituent minerals recovered from five of the samples, supports a fractional crystallization model. The high 18O values found (10.2–12.2 permil) indicate that the magma likely was derived from or assimilated sedimentary materials.Nine samples of the Cretaceous two-mica granite of the Pole Canyon-Can Young Canyon area have 18O values in the range 10.6–12.1 permil. These high 18O values, an initial87Sr/86Sr ratio of 0.7165, and the presence of muscovite along with an accessory mineral suite limited to monazite, apatite, zircon, and an allanite-like mineral, characterize this intrusive mass as an S-type granite. It probably formed through anatexis of late Precambrian pelitic rocks.The granitoid rock exposed in the Young Canyon-Kious Basin area is Tertiary (32 m.y.). Most of this intrusive has been cataclastically deformed as a result of late (18 m.y.) movement on the overlying Snake Range decollement. The undeformed portion of this intrusive has 18O values of 8.7–10.0 permil. However, the deformed portion of this intrusive has 18O values as low as –1.1 permil, apparently resulting from isotopic exchange between this rock and ground water at the time of cataclasis.Although the igneous types exposed in the southern Snake Range differ petrologically and range in age from Jurassic to Tertiary, most have relatively high 18O values compared with other granitoid rocks of the Basin-Range Province.  相似文献   

12.
Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The 34S values of sulfide minerals (-3.0 to 5.3 ), and the measured and calculated O-H isotope compositions of ore fluids (18O = 5.7 to 7.6; = –74 to –80) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, Kimcheon Granite of Late Jurassic age.  相似文献   

13.
Soil samples collected from various places in and around Mysore were analyzed for the total trace elements such as Fe, Mn, Cu, Zn, Pb, and Cd. The results of the analysis indicate that the concentration of lead and cadmium in soils is below 2.5 g ml–1 and 0.2 g ml–1, respectively, which are the minimum detection levels, whereas the concentration of iron, manganese, copper, and zinc in most of the samples is within the global average ranges of 3%, 500–1000 g g–1, 15–40 g g–1, and 50–100 g g–1, respectively. The investigated area has the presence of gneisses and schists, in which partly there are igneous intrusions and pegmatitic intrusions. There are amphibolite enclaves in gneisses that account for the higher concentration of trace elements. The lower concentration may be attributed to the presence of silicic type of rock.  相似文献   

14.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

15.
Northern Brazil contains remnants of Mesozoic flood basalts and hypabyssal rocks that were apparently emplaced during tectonism related to opening of the Atlantic Ocean. Analyses and new K-Ar ages reveal that this 700x250 km Maranhão province (5°–8°S) has low-Ti basalts (1.1 wt% TiO2) in the western part that range about 160 to 190 Ma, and high-Ti basalts (3.4–4.4 wt% TiO2) in the eastern part about 115–122 Ma. Low-Ti basalt compositions are less evolved and have a smaller range, Mg# 62-56, than the high-Ti basalts, Mg# 44–33. General characteristics of the least evolved members of low- and high-Ti groups include, respectively, Zr 100 and 250 ppm, Sr 225 and 475 ppm, Ba 200 and 500 ppm, Nb 10 and 26 ppm, Y 29 and 36 ppm, La/Yb(n) 4.2 and 8.8, where La(n) is 30 and 90. Overall compositions resemble the low- and high-Ti basaltic rocks of the Mesozoic Serra Geral (Paraná) province in southern Brazil. The Maranhão low-Ti basalts have more radiogenic Sr and Pb and higher 18O than the high-Ti basalts. Respectively, low- vs high-Ti: Sr26–54 vs 15–18; 206Pb/204Pb=18.25–.78 vs 18.22–.24; and 18O 8.9–12.6 vs 6.5–8.6. Nd isotopes overlap: Nd–1.6 to –3.8 vs –2.1 to –3. Ages, compositions, and isotopes indicate that the low- and high-Ti groups had independent parentages from enriched subcontinental mantle. However, both groups can be modeled from one source composition if low-Ti basalt isotopes reflect crustal contamination, and if the parentages for each group were picritic liquids that represent either higher (for low-Ti) or lower (for high-Ti) percentages of melting of that single source. When comparing Pb isotopes of Maranhão and Serra Geral high-Ti basalts (uncontaminated) to evaluate the DUPAL anomaly, Maranhão has Pb 7/4=4.6–11, and Pb 8/4=72–87; Serra Geral has Pb 7/4=10–13, and Pb 8/4=95–125. The small difference is not enough to conform to DUPAL contours, and is inconsistent with large-scale isotopic heterogeneity of mantle beneath Brazil prior to rifting of South America from Africa. Maranhão low-Ti magmas probably relate to the opening of central North Atlantic, and high-Ti magmas to the opening of equatorial Atlantic. The proposed greater percentage of source melting for low-Ti basalts may reflect a Triassic-Jurassic hotspot, while lesser melting for high-Ti magmas may relate to Cretaceous decompressional (rifting) melting.  相似文献   

16.
Eclogites from the Roberts Victor mine, Kaapvaal craton are classic examples of subducted Achaean oceanic crust brought up as xenoliths by kimberlite. New in situ trace element and oxygen isotope data (18O=3.09–6.99 SMOW) presented here reemphasise their origin from seawater-altered plagioclase-rich precursors. Their Hf–Nd isotopic compositions are not in agreement with compositions predicted by geochemical modelling of the isotopic composition of aged subducted oceanic crust. Instead, Hf isotopic compositions are very heterogeneous, varying between 0.281625 and 0.355077 (–37.8 and +2561 Hf) at the time of kimberlite emplacement (128 Ma) in keeping with equally variable Nd isotopic compositions (0.511124–0.545092; –26.3 to +636 Nd). However, most samples plot on the terrestrial array. The isotopic compositions of some samples are too extreme to play a major role in mixed peridotite-eclogite melting in basalt source regions, whereas the isotopic composition of other samples is reconcilable with a contribution of up to ca. 15% of eclogite partial melt to the MORB source. Most importantly, our results show that ancient subducted oceanic crust is not isotopically homogeneous and should not be treated as a component or reservoir during geochemical modelling. The heterogeneity reflects radiogenic in-growth starting from small compositional heterogeneities in gabbroic protoliths, followed by modification during sea-floor alteration, subduction and emplacement into the subcratonic lithosphere.  相似文献   

17.
The behaviour of synthetic Mg-ferrite (MgFe2O4) has been investigated at high pressure (in situ high-pressure synchrotron radiation powder diffraction at ESRF) and at high temperature (in situ high-temperature X-ray powder diffraction) conditions. The elastic properties determined by the third-order Birch–Murnaghan equation of state result in K0=181.5(± 1.3) GPa, K=6.32(± 0.14) and K= –0.0638 GPa–1. The symmetry-independent coordinate of oxygen does not show significant sensitivity to pressure, and the structure shrinking is mainly attributable to the shortening of the cell edge (homogeneous strain). The lattice parameter thermal expansion is described by a0+a1*(T–298)+a2/(T–298)2, where a0=9.1(1) 10–6 K–1, a1=4.9(2) 10–9 K–2 and a2= 5.1(5) 10–2 K. The high-temperature cation-ordering reaction which MgFe-spinel undergoes has been interpreted by the ONeill model, whose parameters are = 22.2(± 1.8) kJ mol–1 and =–17.6(± 1.2) kJ mol–1. The elastic and thermal properties measured have then been used to model the phase diagram of MgFe2O4, which shows that the high-pressure transition from spinel to orthorombic CaMn2O4-like structure at T < 1700 K is preceded by a decomposition into MgO and Fe2O3.  相似文献   

18.
The Ixtahuacan Sb-W deposits are hosted by upper Pennsylvanian to Permian metasedimentary rocks of the central Cordillera of Guatemala. The deposits consist of gold-bearing arsenopyrite, stibnite and scheelite. Arsenopyrite and scheelite are early in the paragenesis, occurring as disseminations in pyritiferous black shale/sandstone and in argillaceous limestone, respectively. Some stibnite is disseminated, but the bulk of the stibnite occurs as massive stratabound lenses in black shales and in quartz-ankerite veins and breccias, locally containing scheelite.Microthermometric measurements on fluid inclusions in quartz and scheelite point to a low temperature (160–190°C) and low to moderate salinity (5–15 wt% NaCl eq.) aqueous ore fluid. Abundant vapour-rich inclusions suggest that the fluid boiled. Carbon dioxide was produced locally as a result of interaction of the aqueous fluid with the argillaceous limestone. Bulk leaching experiments and SEM-EDS analyses of decrepitated fluid inclusion residues indicate that the ore-bearing solution was NaCl-dominated. The 18O values of quartz, ankerite and scheelite from mineralized veins range from 19.7 to 20.5, 18.1 to 20.0 and 7.0 to 8.4 respectively. The average temperature calculated from quartz-scheelite oxygen isotopic fractionation is 170°C. The oxygen isotopic composition of the fluid, interpreted to have been in equilibrium with these minerals, ranged from 5.7 to 7.6, and is considered to represent an evolved meteoric water. Diagenetic or syngenetic pyrite has a sulphur isotopic composition of 0.5±0.3 which is consistent with bacterial reduction of sulphate. The 34S values of arsenopyrite and stibnite range from –2.8 to 2.0 and –2.7 to –2.3 respectively, and are though to reflect sulphur derived from pyrite.The Ixtahuacan deposits are interpreted to have formed at low temperature (<200°C) and a depth of a few hundred metres from a low fO2 (10–49–10–57), high pH (7–8) fluid. Arsenic was probably transported as arsenious acid, antimony and gold as thio-complexes and tungsten as the complex HWO 4 .A model is proposed in which a meteoric fluid, heated by a felsic intrusion at depth, was focused to shallow levels along faults. The interaction of the fluid with pyritiferous beds caused the deposition of arsenopyrite as a result of sulphidation and/or decreasing fO2; gold probably co-precipitated with As or was adsorbed onto the arsenopyrite. The precipitation of stibnite was caused by boiling. Scheelite deposited in response to the increase in Ca2+ activity which accompanied interaction of the ore fluid with the argillaceous limestones.  相似文献   

19.
In-situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press of SPring-8 on stishovite SiO2 and pressure-volume-temperature data were collected at up to 22.5 GPa and 1,073 K, which corresponds to the pressure conditions of the base of the mantle transition zone. The analysis of room-temperature data yielded V0=46.56(1) Å3, KT 0=296(5) GPa and K T =4.2(4), and these properties were consistent with the subsequent thermal equation of state (EOS) analyses. A fit of the present data to high-temperature Birch-Murnaghan EOS yielded (KT /T) P =–0.046(5) GPa K–1 and = a + bT with values of a =1.26(11)×10–5 K–1 and b =1.29(17)×10–8 K–2. A fit to the thermal pressure EOS gives 0=1.62(9)×10–5 K–1, ( K T / T) V =–0.027(4) GPa K–1 and (2P /T 2) V =27(5)×10–7 GPa K–2. The lattice dynamical approach by Mie-Grüneisen-Debye EOS yielded 0=1.33(6), q =6.1(8) and 0=1160(120) K. The strong volume dependence of the thermal pressure of stishovite was revealed by the analysis of present data, which was not detectable by the previous high-temperature data at lower pressures, and this yields ( K T / T) V 0 and q 1. The analyses for the fictive volume for a and c axes show that relative stiffness of c axis to a axis is similar both on compression and thermal expansion. Present EOS enables the accurate estimate of density of SiO2 in the deep mantle conditions.  相似文献   

20.
Post-3Ma volcanics from the N Luzon arc exhibit systematic variations in 87Sr/86Sr (0.70327–0.70610), 143Nd/144Nd (0.51302–0.51229) and 208Pb*/206Pb* (0.981–1.035) along the arc over a distance of about 500 km. Sediments from the South China Sea west of the Manila Trench also exhibit striking latitudinal variations in radiogenic isotope ratios, and much of the isotopic range in the volcanics is attributed to variations in the sediment added to the mantle wedge during subduction. However, Pb-Pb isotope plots reveal that prior to subduction, the mantle end-member had high 8/4, and to a lesser extent high 7/4, similar to that in MORB from the Indian Ocean and the Philippine Sea Plate. Th isotope data on selected Holocene lavas indicate a source with unusually high Th/U ratios (4.5–5.5). Combined trace element and isotope data require that three end-members were implicated in the genesis of the N Luzon lavas: (1) a mantle wedge end-member with a Dupal-type Pb isotope signature, (2) a high LIL/HFS subduction component interpreted to be a slab-derived hydrous fluid, and (3) an isotopically enriched end-member which reflects bulk addition (<5%) of subducted S China Sea terrigenous sediment. The 87Sr/86Sr ratios in the volcanics show a restricted range compared with that in the sediments, and this contrasts with 143Nd/144Nd and 208Pb*/206Pb*, both of which have similar ranges in the volcanics and sediments. Such differences imply that whereas the isotope ratios of Nd, Pb and Th are dominated by the component from subducted sediment, those of Sr reflect a larger relative contribution from the slab-derived fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号