首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4?C6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5?±?1.3?×?10?C8 cm2?s?C1 at 21°C, compared to previously published diffusion coefficients of 1.2?×?10?C18 cm2?s?C1 (21°C) to 3.0?×?10?C15 cm2?s?C1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (??3%) and tortuosity (??6?C13) produces effective diffusion coefficients of 1?×?10?C8 cm2?s?C1 (21°C) and 1?×?10?C7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8?±?0.4% (SD, n?=?4) and mudstones 3.1?±?0.8% (SD, n?=?4).  相似文献   

2.
The heat capacities of lawsonite, margante, prehnite and zoisite have been measured from 5 to 350 K with an adiabatic-shield calorimeter and from 320 to 999.9 K with a differential-scanning calorimeter. At 298.15 K, their heat capacities, corrected to end-member compositions, are 66.35, 77.30, 79.13 and 83.84 cal K?1 mol?1; their entropies are 54.98, 63.01, 69.97 and 70.71 cal K?1 mol?1, respectively. Their high-temperature heat capacities are described by the following equations (in calories, K, mol): Lawsonite (298–600 K): Cp° = 66.28 + 55.95 × 10?3T ? 15.27 × 105T?2 Margarite (298–1000 K): Cp° = 101.83 + 24.17 × 10?3T ? 30.24 × 105T?2 Prehnite (298–800 K): Cp° = 97.04 + 29.99 × 10?3T ? 25.02 × 105T?2 Zoisite (298–730 K): Cp° = 98.92 + 36.36 × 10?3T ? 24.08 × 105T?2 Calculated Clapeyron slopes for univariant equilibria in the CaO-Al2O3-SiO2-H2O system compare well with experimental results in most cases. However, the reaction zoisite + quartz = anorthite + grossular + H2O and some reactions involving prehnite or margarite show disagreements between the experimentally determined and the calculated slopes which may possibly be due to disorder in experimental run products. A phase diagram, calculated from the measured thermodynamic values in conjunction with selected experimental results places strict limits on the stabilities of prehnite and assemblages such as prehnite + aragonite, grossular + lawsonite, grossular + quartz, zoisite + quartz, and zoisite + kyanite + quartz. The presence of this last assemblage in eclogites indicates that they were formed at moderate to high water pressure.  相似文献   

3.
The thermal expansivity of liquid GeO2 at temperatures just above the glass transition has been obtained using a combination of scanning calorimetry and dilatometry. The calorimetric and dilatometric curves of c p and dV/dT are normalized to the temperature derivative of fictive temperature versus temperature using the method of Webb et al. (1992). This normalization, based on the equivalence of relaxation parameters for volume and enthalpy, allows the completion of the dilatometric trace across the glass transition to yield liquid expansivity and volume. The values of liquid volume and expansivity obtained in this study are combined with high temperature densitometry determinations of the liquid volume of GeO2 by Sekiya et al. (1980) to yield a temperature-volume relation for GeO2 melt from 660 to 1400 °C. Liquid GeO2 shows a strongly temperature-dependent liquid molar expansivity, decreasing from 20.27 × 10?4 cm3 mol?1°C?1 to 1.97 × 10?4cm3 mol?1 °C?1 with increasing temperature. The coefficient of volume thermal expansion (α v ) decreases from 76.33 × 10?6 °C?1 to 2.46 × 10?6 °C?1 with increasing temperature. A qualitatively similar volume-temperature relationship, with α v decreasing from 335 × 10?6 °C?1 to 33 × 10?6 °C?1 with increasing temperature, has been observed previously in liquid B2O3. The determination of the glass transition temperature, liquid volume, liquid and glassy expansivities and heat capacities in this study, combined with compressibility data for glassy and liquid GeO2 from the literature (Soga 1969; Kurkjian et al. 1972; Scarfe et al. 1987) allows the calculation of the Prigogine-Defay ratio (Π), c p -c v and the thermal Grüneisen parameter (γ th) for GeO2. From available data on liquid SiO2 it is concluded that liquid GeO2 is not a good analog for the low pressure properties of liquid SiO2.  相似文献   

4.
The kinetics of oxygen isotope self-diffusion in natural samples of hornblende, tremolite, and richterite have been measured. Samples were run under hydrothermal conditions using 18O enriched water. Profiles of 18O(16O + 18O)vs depth into the crystal were obtained using an ion microprobe; the depths of sputtered holes were measured using an optical interferometer. At 1000 bars (100 MPa) water pressure, the activation energies (Q) and pre-exponential factors (D0) for diffusion parallel to c are: D0(cm2/sec) Q (kcal/gm-atom) T (°C) Hornblende 1+20?1 × 10?741 ± 6 650–800 Tremolite 2+30?2× 10?8 39 ± 5 650–800 Richterite 3+5?2 × 10?4 57 ± 2 650–800The diffusion coefficient (D) for hornblende at 800°C and 1000 bars water pressure measured parallel to the c crystallographic direction is at least ten times greater than that parallel to the a or b directions. An increase in water pressure from 200 to 2000 bars increases D by a factor of 2.7 for diffusion parallel to c at 800°C. The D value for hornblende at 800°C is about 0.01 that for quartz and 0.001 that for anorthite. As a result, closure temperatures for oxygen exchange in natural primary amphiboles are significantly higher than for quartz or feldspars. It is unlikely that amphiboles will exchange oxygen isotopes by diffusion under most crustal conditions.  相似文献   

5.
Interdiffusion coefficients of Al + Al vs. Mg + Si in the gehlenite–åkermanite system of melilite were determined by coupled annealing of synthesized end-member single crystals. The observed diffusion coefficients for a couple-annealed sample vary for about 2 orders of magnitude, showing strong dependence on the gehlenite–åkermanite composition: diffusion coefficient observed at 1350 °C, for example, is 3 × 10?13 cm2 s?1 at 5 mol% åkermanite composition (Ak5), increases to 2 × 10?11 cm2 s?1 at Ak80, and then decreases to 1 × 10?12 cm2 s?1 at Ak95. The diffusion coefficient–temperature relation indicates high activation energy of diffusion of about 420 kJ mol?1 for gehlenite-rich melilite. The observed diffusion coefficient–composition relation may be explained by a combination of (1) the diffusion coefficient–melting temperature relation (Flynn's rule) and (2) the feasibility of local charge compensation, which can possibly be maintained more easily in the intermediate chemical composition. The high activation energy value for gehlenitic melilite appears to correspond to the complex diffusion mechanism. The observed highly variable diffusion coefficients suggest that gehlenite–åkermanite zoning in the melilite crystals in Ca, Al-rich inclusions in the carbonaceous meteorites may provide a sensitive indicator for the thermal history of the inclusions.  相似文献   

6.
The experimental dissolution of zircon into a zircon-undersaturated felsic melt of variable water content at high pressure in the temperature range 1,020° to 1,500° C provides information related to 1) the solubility of zircon, 2) the diffusion kinetics of Zr in an obsidian melt, and 3) the rate of zircon dissolution. Zirconium concentration profiles observed by electron microprobe in the obsidian glass adjacent to a large, polished zircon face provide sufficient information to calculate model diffusion coefficients. Results of dissolution experiments conducted in the virtual absence of water (<0.2% H2O) yield an activation energy (E) for Zr transport in a melt ofM=1.3 [whereM is the cation ratio (Na+K+2Ca)/(Al·Si)] of 97.7±2.8 kcal-mol?1, and a frequency factor (D 0) of 980 ?580 +1,390 cm2-sec?1. Hydrothermal experiments provide an E=47.3±1.9 kcal-mol?1 andD 0=0.030 ?0.015 +0.030 cm2-sec?1. Both of these results plot close to a previously defined diffusion compensation line for cations in obsidian. The diffusivity of Zr at 1,200° C increases by a factor of 100 over the first 2% of water introduced into the melt, but subsequently rises by only a factor of five to an apparent plateau value of ~2×10?9 cm2-sec?1 by ~6% total water content. The remarkable contrast between the wet and dry diffusivities, which limits the rate of zircon dissolution into granitic melt, indicates that a 50 μm diameter zircon crystal would dissolve in a 3 to 6% water-bearing melt at 750° C in about 100 years, but would require in excess of 200 Ma to dissolve in an equivalent dry system. From this calculation we conclude that zircon dissolution proceeds geologically instantaneously in an undersaturated, water-bearing granite. Estimates of zircon solubility in the obsidian melt in the temperature range of 1,020° C to 1,500° C confirm and extend an existing model of zircon solubility to these higher temperatures in hydrous melts. However, this model does not well describe zircon saturation behavior in systems with less than about 2% water.  相似文献   

7.
A molecular cloud and high-velocity outflow associated with the star-forming region L379 IRS3 have been mapped in the 6?1-50E methanol and CS (3-2) lines using the 12-meter Kitt Peak telescope. The estimated CS column density and abundance in the molecular cloud are 8×1014 cm?2 and 4×10?9, respectively. LVG modeling of the methanol emission constrains the gas density in the cloud to (1–4)×105 cm?3 and the gas kinetic temperature to 20–45 K. The upper limit on the density of the high-velocity gas is 105 cm?3.  相似文献   

8.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

9.
Tracer diffusion coefficients of 153Gd and 152Eu in olivine tholeiite have been determined at temperatures between 1150 and 1440°C. The results are identical for both tracers within experimental error. Between 1440 and 1320°C the diffusion coefficients are given by D(Eu, Gd) = 0.058 exp(?40,600/ RT). Between 1320 and 1210°C, the diffusion coefficients are constant at D = (1.4 ± 0.4) × 10?7 cm2s?1 and between 1210 and 1150°C, the D values drop irregularly to 4 × 10?9 cm2s?1. The liquidus temperature (1270°C) lies within the region of constant D. Such anomalous behavior has not been encountered in previous studies of Ca, Sr, Ba and Co diffusion in basalt. To explain the constant D value near the liquidus, we speculate that the structure of the melt changes as a function of temperature in such a way that the normal temperature dependence of the diffusivity is compensated. For example, the rare earth ions may be displaced from their (high temperature) octahedral coordination sites to other sites where they are more readily dissociated and therefore become progressively more mobile. The behavior below 1210°C may be the result of relatively stable complexes or molecules in the melt or of the formation of a REE bearing crystalline phase that has so far escaped detection. Preliminary results for Eu diffusion in obsidian are D (Eu, 800°C) = 5 × 10?13 cm2 s?1 and D (Eu, 950°C) = 1.5 × 10?11 cm2 s?1. These data are consistent with an activation energy of 59 Kcal mole?1. These low diffusivities indicate that the partitioning of REE in crystallizing intermediate and acidic melts may be controlled by diffusion in the melt rather than equilibrium between the crystal surface and the bulk melt.The diffusion data are applied to partial melting in the mantle, in an attempt to explain how LREE enriched tholeiites may be derived from a LREE depleted mantle source. In this model LREE diffuse from garnet bearing regions that have small melt fractions into garnet free regions that have relatively large melt fractions. REE diffusion is so slow that this process is quantitatively significant only in small partially molten bodies (diameter ~1 km or less) or in larger, but strongly flattened bodies. Internal convective motion during diapiric rise would also increase the efficiency of the process.  相似文献   

10.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith.  相似文献   

11.
Na2MgSiO4 crystals prepared hydrothermally at 700° C and 3,000 atm are related to carnegieite with SG Pmn21, a=7.015(2), b=10.968(2), and c=5.260(1). Na conductivity in Na2MgSiO4 is 3.0×10?5 (ohm-cm)?1 at 300° C but can be raised to 1.1×10?3 (ohm-cm)?1 by creating Na vacancies in the composition Na1.9Mg0.9Al0.1O4. Na4Mg2Si3O10 is also a cristobalite-related carnegieite with the orthorhombic cell a=10.584(7), b=14.328(7), and c=5.233(5). The Na conductivity of Na4Mg2Si3O10 is 4.8×10?3 (ohm-cm)?1 at 300° C.  相似文献   

12.
The heat capacity of natural chamosite (XFe=0.889) and clinochlore (XFe=0.116) were measured by differential scanning calorimetry (DSC). The samples were characterised by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy. DSC measurements between 143 and 623?K were made following the procedure of Bosenick et?al. (1996). The fitted data for natural chamosite (CA) in J?mol?1?K?1 give: C p,CA = 1224.3–10.685?×?103?×?T ??0.5???6.4389?× 106T ??2?+?8.0279?×?108?×?T ??3 and for the natural clinochlore (CE): C p,CE = 1200.5–10.908?×?103T ??0.5?? 5.6941?×?106?×?T ??2?+?7.1166?×?108?×?T ??3. The corrected C p-polynomial for pure end-member chamosite (Fe5Al)[Si3AlO10](OH)8 is C p,CAcor = 1248.3–11.116?× 103?×?T ??0.5???5.1623?×?106?×?T ??2?+?7.1867?×?108×T ??3 and the corrected C p-polynomial for pure end-member clinochlore (Mg5Al)[Si3AlO10](OH)8 is C p,CEcor = 1191.3–10.665?×?103?×?T ??0.5???6.5136?×?106?×?T ??2?+ 7.7206?×?108?×?T ??3. The corrected C p-polynomial for clinochlore is in excellent agreement with that in the internally consistent data sets of Berman (1988) and Holland and Powell (1998). The derived C p-polynomial for chamosite (C p,CAcor) leads to a 4.4% higher heat capacity, at 300?K, compared to that estimated by Holland and Powell (1998) based on a summation method. The corrected C p-polynomial (C p,CAcor) is, however, in excellent agreement with the computed C p-polynomial given by Saccocia and Seyfried (1993), thus supporting the reliability of Berman and Brown's (1985) estimation method of heat capacities.  相似文献   

13.
We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate (T = 1,157–1,187 °C and $ \dot{\gamma }_{i} $ γ · i  = 4.26 s?1 for Stromboli; T = 1,131–1,182 °C and $ \dot{\gamma }_{i} $ γ · i  = 0.53 s?1 for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction (?) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing ΔT and flow, while slow diffusion-limited growth characterizes low ΔT—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates (G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10?9 m s?1) compared to Etna (2.1 ± 1.6 × 10?9 m s?1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m?3 s?1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m?3 s?1 for Etna. The extremely low value of 3.6 × 104 m?3 s?1 recorded at the lowest undercooling experiment for Etna (ΔT = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical transportation of matter, resulting in the higher J and G observed. Any modeling pertaining to magma dynamics in the conduit (e.g., ascent rate) and lava flow emplacement (e.g., flow rate, pāhoehoe–‘a‘ā transition) should therefore take the effects of dynamic crystallization into account.  相似文献   

14.
The weathering rates and mechanisms of three types of glassy rocks were investigated experimentally at 25 °C, pH 1.0 to 6.2, and reaction times as much as to 3 months. Changes in major element chemistry were monitored concurrently as a function of time in the aqueous solution and within the near surface region of the glass. Leach profiles, obtained by a HF leaching technique, displayed near-surface zones depleted in major cations. These zones increased in depth with increasing time and decreasing pH of reactions. Release rates into the aqueous solution were parabolic for Na and K and linear for Si and Al. A coupled weathering model, involving surface dissolution with concurrent diffusion of Na, K, and Al, produced a mass balance between the aqueous and glass phases. Steady state conditions are reached at pH 1.0 after approximately 3 weeks of reaction. Steady-state is not reached even after 3 months at pH 6.2.An interdiffusion model describes observed changes in Na diffusion profiles for perlite at pH 1.0. The calculated Na self-diffusion coefficient of 5 × 10?19 cm2·s?1 at 25°C approximates coefficients extrapolated from previously reported high temperature data for obsidian. The self-diffusion coefficient for H3O+, 1.2 × 10?20 cm2·s?1, is similar to measured rates of water diffusion during hydration of obsidian to form perlite.  相似文献   

15.
The solubility and dissolution kinetics of apatite in felsic melts at 850°–1500°C have been examined experimentally by allowing apatite crystals to partially dissolve into apatite-undersaturated melts containing 0–10 wt% water. Analysis of P and Ca gradients in the crystal/melt interfacial region enables determination of both the diffusivities and the saturation levels of these components in the melt. Phosphorus diffusion was identified as the rate-limiting factor in apatite dissolution. Results of four experiments at 8 kbar run in the virtual absence of water yield an activation energy (E) for P diffusion of 143.6 ± 2.8 kcal-mol?1 and frequency factor (D0) of 2.23+2.88?1.26 × 109cm2-sec?1. The addition of water causes dramatic and systematic reduction of both E and D0 such that at 6 wt% H2O the values are ~25 kcal-mol?1 and 10?5 cm2-sec?1, respectively. At 1300°C, the diffusivity of P increases by a factor of 50 over the first 2% of water added to the melt, but rises by a factor of only two between 2 and 6%, perhaps reflecting the effect of a concentration-dependent mechanism of H2O solution. Calcium diffusion gradients do not conform well to simple diffusion theory because the release of calcium at the dissolving crystal surface is linked to the transport rate of phosphorus in the melt, which is typically two orders of magnitude slower than Ca. Calcium chemical diffusion rates calculated from the observed gradients are about 50 times slower than calcium tracer diffusion.Apatite solubilities obtained from these experiments, together with previous results, can be described as a function of absolute temperature (T) and melt composition by the expression: In Dapatite/meltP = [(8400 + ((SiO2 ? 0.5)2.64 × 104))/T] ? [3.1 + (12.4(SiO2 ? 0.5))] where SiO2 is the weight fraction of silica in the melt. This model appears to be valid between 45% and 75% SiO2, 0 and 10% water, and for the range of pressures expected in the crust.The diffusivity information extracted from the experiments can be directly applied to several problems of geochemical interest, including I) dissolution times for apatite during crustal anatexis, and 2) pileup of P, and consequent local saturation in apatite, at the surfaces of growing major-mineral phases.  相似文献   

16.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   

17.
Experiments reproducing the development of bimetasomatic zoning in the CaO-MgO-SiO2-H2O-CO2 system were conducted at elevated P-T parameters with the use of samples of naturally occurring quartzdolomite and calcite-serpentinite rocks. In order to maintain mass transfer exclusively via the diffusion-controlled mechanism, we used the method of the ensured compaction of the cylindrical sample surface with a thin-walled gold tube. In the course of the experiments, a single diopside zone ~2.5 × 10?5 m thick was obtained at the quartz-dolomite interface at T = 600°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.5 for 25–40 days and a succession of metasomatic zones at T = 750°C, $P_{H_2 O + CO_2 } $ = 300 MPa, and $X_{CO_2 } $ = 0.4 for 48 days. The metasomatic zones were as follows (listed in order from quartz to dolomite): wollastonite ‖ diopside ‖ tremolite ‖ calcite + forsterite; with the average width of the diopside zone equal to ~1.3 × 10?5 m and the analogous part of the wollastonite zone equal to ~2.6 × 10?5 m. Two zones (listed in order from calcite to serpentine) diopside and diopside-forsterite (the average widths of these zones were ~6 × 10?4 and ~8 × 10?4 m, respectively) were determined to develop at contact between serpentine and calcite during experiments that lasted 124 days at T = 500°C, $P_{H_2 O + CO_2 } $ = 200 MPa, and $X_{CO_2 } $ = 0.2–0.4. In the former and latter situations, the growth rate of the zoning ranged between 3.1 × 10?12 and 1.2 × 10?11 m/s and between 5.6 × 10?11 and 7.5 × 10?11 m/s, respectively. The higher growth rate in the latter case can be explained by the higher water mole fraction in the fluid, with this water released during serpentinite decomposition in the experiments. The development of the only diopside zone in the experiments modeling the interaction of quartz and dolomite at T = 600–650°C and $P_{H_2 O + CO_2 } $ = 200 MPa is in conflict with theoretical considerations underlain by the Korzhinskii-Fisher-Joesten model. The interaction of quartz and dolomite in the CaO-MgO-SiO2-CO2-H2O system at the P-T- $X_{CO_2 } $ parameters specified above should be attended by the origin of a number of reaction zones consisting of various proportions of talc, forsterite, tremolite, diopside, and calcite. The saturation of the fluid with respect to these minerals was likely not reached, and this resulted in the degeneration of the respective stability fields in the succession of zones. Conceivably, this was related to the insufficient rates of quartz and dolomite dissolution and the relatively low diffusion rates of the dissolved species in the low-permeable medium. In the experiments with interacting calcite and serpentine, the zoning calcite ‖ diopside ‖ diopside + forsterite ‖ serpentine developed in its complete form, in agreement with the theory. Equilibrium was likely achieved in these experiments due to the higher diffusion coefficients.  相似文献   

18.
The effect of ion beam irradiations on the elastic properties of hydrous cordierite was investigated by means of Raman and X-ray diffraction experiments. Oriented single crystals were exposed to swift heavy ions (Au, Bi) of various specific energies (10.0–11.1 MeV/u and 80 MeV/u), applying fluences up to 5 × 1013 ions/cm2. The determination of unit-cell constants yields a volume strain of 3.4 × 10?3 up to the maximum fluence, which corresponds to a compression of non-irradiated cordierite at ~480 ± 10 MPa. The unit-cell contraction is anisotropic (e 1 = 1.4 ± 0.1 × 10?3, e 2 = 1.5 ± 0.1 × 10?3, and e 3 = 7 ± 1 × 10?4) with the c-axis to shrink only half as much as the axes within the ab-plane. The lattice elasticity for irradiated cordierite (? = 1 × 1012 ions/cm2) was determined from single-crystal XRD measurements in the diamond anvil cell. The fitted third-order Birch–Murnaghan equation-of-state parameters of irradiated cordierite (V 0 = 1548.41 ± 0.16 Å3, K 0 = 117.1 ± 1.1 GPa, ?K/?P = ?0.6 ± 0.3) reveal a 10–11 % higher compressibility compared to non-irradiated cordierite. While the higher compressibility is attributed to the previously reported irradiation-induced loss of extra-framework H2O, the anomalous elasticity as expressed by elastic softening (β a ?1 , β b ?1 , β c ?1  = 397 ± 9, 395 ± 28, 308 ± 11 GPa, ?(β ?1)/?P = ?4.5 ± 2.7, ?6.6 ± 8.4, ?5.4 ± 3.0) appears to be related to the framework stability and to be independent of the water content in the channels and thus of the ion beam exposure.  相似文献   

19.
Dried, mature leaves of Aegle Marmelos tree were converted to a powder, which was used as a biosorbent for dyes in water with methylene blue as a case study. The biosorbent had a surface area of 52.63 mg/g, and FTIR spectra showed the presence of –COOH, –NH2, –R–SC=O (thioester) and R1–S(=O, =O)-N(–R2, –R3) groups on the surface. The particles were found to be porous in nature from scanning electron micrographs, and EDX measurements showed the elements C, O, Na, Mg, K, Ca and Fe on the surface. Batch adsorption experiments showed that the adsorption of the dye was preferred at near-neutral conditions. Adsorption equilibrium was achieved in ~120 min with maximum dye uptake of 19.9 mg/g. Investigation into the kinetics of adsorption indicated that second-order kinetics gave the best fit to the experimental data, and a rate coefficient of 8.0 × 10?2 to 32.3 × 10?2 g mg?1 min?1 was obtained.  相似文献   

20.
Cobalt and magnesium interdiffusion coefficients in synthetic crystals of olivine have been determined by a method of couple annealing. These coefficients increase with temperature and Co concentration. The coefficients in forsterite along the c crystallographic axis range from 1.13 × 10?12 to 6.85 × 10?11 cm2sec?1 at temperatures ranging from 1150 to 1400°C. The calculated activation energies for Co-Mg interdiffusion in forsterite are 526 kJmol?1 above approximately 1300°C and 196 kJmol?1 at lower temperatures. These results indicate that the Co-Mg mobility in olivine is relatively low compared to published results for Fe-Mg interdiffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号