首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

2.
Thermodynamic characteristics and temporal variation of alpine lake breezes in the eastern Southern Alps are examined. Research was conducted in a large glacially excavated basin dominated by an 87 square kilometre melt-water lake as part of a study of windblown dust dispersion. The surrounding mountain ranges were found to shelter the lake basin from most synoptic winds, thereby allowing local and regional thermally generated circulations to develop to ridge height, approximately 1300m above the surrounding landscape. During favourable synoptic conditions the local lake breeze becomes embedded within the regional valley wind forming an extended lake breeze. Tethersonde flights during these conditions made using a kite based sounding system identified both stable internal (SIBL) and thermal internal boundary layer (TIBL) conditions over the down wind shoreline. Two equations for estimating the height of both boundary-layer types were tested against observations and found to provide good first order predictive estimates of boundary-layer height.  相似文献   

3.
Atmospheric response to soil-frost and snow in Alaska in March   总被引:2,自引:0,他引:2  
Summary A hydro-thermodynamic soil-vegetation model including soil freezing/thawing (soil-frost) and snow-metamorphism has been integrated into the PennState/NCAR Mesoscale Meteorological Model MM5 in a two-way coupled mode. A hierarchy of simulations with and without the soil-frost module, each combined with and without the snow module, shows the influence of snow-cover and soil-frost on weather in Alaska. Herein the landscape is featured as it is typically by mesoscale models.Theoretical considerations suggest that organic soil types should be considered in mesoscale modeling because of their different thermal and hydrological behavior as compared to mineral soils. The Ludwig-Soret and Dufour effects are small, but increase appreciably during freezing/thawing and snow-melt.The snow and soil-frost processes have a demonstrable impact on the surface thermal and hydrological regimes and on the near-surface atmospheric conditions even on the short (synoptic) timescales. The presence of snow-cover results in a highly stable stratification. In cloud-free areas, the enhanced loss of radiant energy and cooling of the air over snow-cover lead to a positive feedback to relatively colder, drier conditions. In cloudy areas, a positive feedback to warmer, moister conditions develops over snow-cover. As the changes in atmospheric humidity and temperature caused by snow-cover propagate into the pressure field, sea level pressure is lower by more than 1hPa in the simulations with snow-cover. Although the effect of soil-frost alone is an order of magnitude smaller, the soil-frost snow system leads to an increase of the pressure difference to 1.2hPa. The changes in the pressure field alter wind speed and direction slightly.Soil-frost results in soil temperature differences of 2–5K in the upper soil layers, while snow results in differences of 3–10K. Soil-frost has a notably greater impact in cloud-free than cloudy areas. When a snow-cover is present, frozen soil enhances the insulating effect of a snow-cover in cloudy areas, but reduces it in cloud-free areas. In cloudy areas, soil-frost without snow-cover leads to cooler, drier atmospheric conditions relative to no frost. In cloudy areas, soil-frost under a snow-cover reduces the water supply to the atmosphere as compared to snow-covered conditions without soil-frost. The combined effects of soil-frost and snow increase precipitation locally by as much as 12.2mm/ 48h. If mesoscale modeling does not consider the soil-frost snow system, predicted water vapor fluxes will be too high in cloud-free areas, and too low in cloudy areas.  相似文献   

4.
Summary The response of Lake Victoria basin climate to changes in the lake surface temperatures (LST) has been examined using NCAR-Regional climate model (RegCM2). In the control run uniform lake surface temperature of 24°C was prescribed and the model integrated for four months, starting at the beginning of September, 1988. In the anomaly experiments the LST was perturbed by ±1.5°C, and kept constant during the entire period of the integrations.Simulation results show significant relationship between basin-wide spatial distribution of rainfall and changes in LST. In general during the short rains at warmer/cooler LSTs, significant increase/decrease in the simulated rainfall occurs over the lake surface and surrounding areas. Rainfall exceeding the amount in the control run by more than 50%, particularly over the western, south/southwestern and central parts of the lake is simulated in the run in which the LST is 1.5°C warmer than the control. It is also evident from our results that different parts of the lake basin respond differently to LST changes which is in contrast to the common characterization of the lake basin as a single homogeneous climate regime in many previous studies.In general the results show that regions with largest response to LST anomalies during the short rains are collocated with the ITCZ. In October when the ITCZ is directly located over the lake, the largest response (maximum rainfall) is also located over the same region. As the season progresses and the ITCZ shifts out of the lake into northern Tanzania, the regions of rainfall maxima also shift with it. This appears to explain the unexpected reduction in over-lake rainfall in December in spite of the LST being warmer than control by 1.5°C. We believe this is a direct consequence of the enhanced convection to the south of the lake (over ITCZ) and the tendency of the system to conserve local moisture budget over the lake.  相似文献   

5.
Summary The wind regime of the Lake Tekapo Basin is examined with reference to the interaction of multi-scale local, regional and synoptic circulations. Analysis of the historical wind direction record from Mt John identifies airflow from three principal directions to most frequently affect the study area. Both seasonal and diurnal trends in the frequency of each directional category are identified, which reflect the influence of local thermal forcings and seasonal changes in synoptic circulation on the Lake Tekapo windfield. Meteorological observations from a network of automatic weather stations and anemographs within the study area identified Lake Tekapo to generate its own circulation system, a lake/land breeze. This combines with the larger scale valley wind, which during ideal conditions continues after sunset in the upper reaches of the lake catchment. During light to moderate foehn northwesterly conditions, the combined lake breeze/valley wind system remains decoupled from the prevailing synoptic airstream. Towards evening when local thermal circulations weakened, a channelised foehn airstream often becomes dominant over the entire field area. Observations made during this investigation have a number of applied implications with respect to air pollution dispersion modelling and forecasting within alpine lake basins.With 7 Figures  相似文献   

6.
Summary In this paper, the relationship between seasonal mean (June, July, August and September) monsoon circulation features and the midlatitude circulations in winter and spring seasons have been examined during contrasting years of more (less) number of snow days in winter/spring followed by deficient (excess) Indian Summer Monsoon Rainfall (ISMR) using NCEP/NCAR reanalyzed data for the period 1966–1994. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used to calculate the number of days of snow over west and east Eurasia separately under three classes: class 1 for SD>5cm, class 2 for SD>10cm and class 3 for SD>50cm where SD stands for snow depth. Correlation coefficients are computed between the anomaly in the number of days of snow depth under the above three classes during winter/spring over west and east Eurasia and the subsequent ISMR. HSDSD data show that difference in the number of days of SD>10cm in two extreme years is most prominent in the west Eurasia in the months of January and April. Also the anomaly in the number of days of snow in January and April over west Eurasia has correlation coefficients of –0.69 and –0.56 with the following ISMR, respectively at 0.1% significance level when the SD is more than 10cm at all the stations. Results also show that low-level atmospheric temperature difference between two extreme years of snow days in winter is up to 10°C and the cooling persists up to spring season with a difference of 2°C. This cooling persistence may give rise to anomalous cyclonic circulations over the midlatitudes and tropics which may be responsible for weakening the monsoon circulation over India during the year of more snow days over west Eurasia.  相似文献   

7.
The influence of vegetation and environmental conditions on the lake breeze and associated boundary-layer turbulence structure has been studied using a two-dimensional nonhydrostatic, compressible mesoscale model coupled with the SiB2 land-surface scheme. The results show that the impacts of vegetation on the lake effects are dependent on the environmental conditions, such as soil wetness and background wind, as well as vegetation characteristics. Both soil wetness and background wind play important roles in modifying lake effects on boundary-layer turbulence and the lake breeze, while the effects of vegetation type are secondary compared to the other factors. Without background wind, and under the same soil wetness, the maximum horizontal windspeed of the lake breeze is insensitive to the type of vegetation. Soil wetness can greatly affect both the maximum horizontal windspeed and the maximum vertical velocities of the lake breeze. With background wind, the lake-breeze circulations, upward motion regions, and boundary-layer turbulence structure all change markedly. A weaker background wind can strengthen the lake breeze, while stronger background wind suppresses the lake breeze circulations. The distribution of sensible and latent heat fluxes is also very sensitive to the soil wetness and background wind. However, for the same soil wetness (0.25 and 0.4 were chosen), there is only a small difference in the distribution of sensible and latent heat fluxes between the bare soil and vegetated soil or between the types of vegetated soils.  相似文献   

8.
Summary A variety of programmes and field experiments were carried out in order to develop and evaluate models of transport and diffusion of pollutants in complex terrain areas. As part of this programme, in this study, we have focused our interest on analyzing the basic features of different flow fields and thermal structures developed in a complex area and their relation to air pollution problems. The area is located in the province of Barcelona (in the northeast of Spain) close to a wide industrial zone, thus a pollutant flux could affect this region. In order to carry out the main purpose of this study we have analysed data from a Doppler Sodar (FAS 64) and a network of near surface meteorological and air quality stations. In addition, different dynamical simulations given by a numerical mesoscale model (MM5) are also analyzed. The results show that the main flow fields and thermal structures generated in this area are: sea breeze, slope drainage winds, channelling winds created by terrain constrictions and cool-air accumulation in low-lying regions. This last structure, developed specially in winter time, gives rise to stagnant cold air masses and strong thermic inversions, with average lapse rate of –4 degrees on 100m, which contribute to increase air pollution concentration, especially SO2. Hourly and daily averaged SO2 concentration can be higher than 350 and 138µgm–3 respectively. In addition, as La Plana is located not far from the Mediterranean Sea, during summertime the sea breeze arrives into this zone via its southern entrance, thereby reaching the whole area. The arrival of the sea breeze in to La Plana, which advects pollutants from the nearby industrial area, is the main cause of some of these pollutants, especially ozone and its precursors, attaining high concentrations during afternoon hours. The contribution of the sea breeze is variable, but could represent between a 25% to a 30% of its total value.  相似文献   

9.
Summary ?Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1–2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales. Received June 25, 2001; Revised December 21, 2001  相似文献   

10.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

11.
A puff model is developed in this study, which simultaneously considers the Monte-Carlo technique, the time and space changes of atmospheric parameters, multiple continuity pollutant sources, linear chemical trans-formation and removal of pollutants, and the effect of complex terrain. The continuously observed turbulent statistical quantities, Lagrangian time scales, mesoscale flow field, and mixing layer depth in the PBL in the Dianchi area in China are directly put into the model, and the diurnal variations of air pollution are forecasted, which are dominated by such mesoscale local circulations as mountain and valley breeze, land and lake breeze, and city heat island (Kunming City). The results show that in the case of inputting the same data, they are in good agreement with the experimental data, as well as with the results of the three-dimensional advection-diffusion model (TD-ADM); the diurnal variation of mesoscale local circulation results in the obvious diurnal variation of mesoscale concentration distribution patterns; the Dianchi lake (appr. 300 km2) has a considerable effect on the distribution of air pollution in the area.  相似文献   

12.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

13.
Summary A three-dimensional mesoscale planetary boundary layer model with theE- turbulence closure is used to simulate airflow over a lake of circular shape. A series of model sensitivity studies are performed to examine the effects of lake-land temperature difference, ambient wind magnitude and direction, lake size, surface roughness, the Coriolis force and baroclinic ambient wind conditions on mesoscale lake circulations.The lake-land temperature difference is essentially the basic energy source driving the mesoscale circulations over the lake on synoptically undisturbed days. A lake-breeze convergence zone is predicted by the model due to the differential heating between the land and the water. It is found that spatial and temporal variations of this convergence zone and associated convection are strongly controlled by the direction and the magnitude of the ambient wind. Under southeasterly and southwesterly ambient winds, the lake-breeze convergence zone and the associated convection occur primarily along up wind and lateral sides of the lake with reference to the general direction of the ambient flow. In contrast to the southeasterly and southwesterly ambient winds, the lake-breeze convergence zone and the convection are predicted all around the coastline of the lake under calm wind.The model also predicts a cloudless region over the lake in all the case studies due to divergent nature of the lake-breeze circulation. The lake size is found to have a significant effect in intensifying convection. Surface roughness over the land surface is found to be important in determining the intensity of the convection. The combined effect of the Coriolis force and the differential surface roughness between land and water appear to be the responsible mechanism for producing the asymmetric shape of the lake-breeze convergence zone around the symmetric circular lake. Finally, it was found that an initial baroclinic flow has different mesoscale lake-breeze circulation patterns as compared to an initial barotropic flow.With 16 Figures  相似文献   

14.
中国地区山谷风研究进展   总被引:1,自引:0,他引:1  
田越  苗峻峰 《气象科技》2019,47(1):41-51
随着城市化的发展,越来越多的城市建立在山区附近或山谷之中。受地理环境和气象条件等因素影响,各地山谷风特征各不相同。山谷风对局地风场、气候特征有着重要作用,与逆温和污染物浓度变化也具有良好相关。本文从山谷风研究的主要手段—观测、理论和数值模拟出发,重点回顾了国内山谷风研究成果,并讨论了与其他中尺度环流(海陆风、湖陆风、城市热岛、植被风、冰川风环流)的相互作用,以及包括山谷风在内的山地环流对大气污染的影响。最后对国内研究进展进行总结,并提出了一些还需深入研究和探讨的问题。  相似文献   

15.
Summary Trends of monthly air temperature extremes were investigated in five meteorological stations of the Grand-Duchy of Luxembourg during the period 1949–1998. The application of an innovative homogenization method based on the concept of relative homogeneity to climatic time series allows identifying multiple break points, as well as correcting data series in an objective and robust statistical way. The rise of maximum temperature (Tmax) has occurred at a rate of 1.5 times that of the minimum temperature (Tmin) in winter (+1.4°C versus +0.9°C) and summer (+1.4°C versus +0.8°C). No trend in temperature extremes was found in autumn, while spring was affected by a small warming (+0.3°C) of Tmin and no change in Tmax resulting in a decrease of the diurnal temperature range (DTR) (–0.3°C). In spring, a strong positive linear relationship between Tmin warming and local terrain slope could be found. Comparison to new-gridded large-scale climatologies indicates generally close agreement to temperature trends during the 1949–1998 period, while a lower local warming was observed in summer during the post-1975 period following the changing-point year of atmospheric circulation over North-western Europe. This study shows that the question of data homogeneity is not trivial and should receive careful attention before quantifying historical temperature trends and identifying their spatial patterns at regional scale.  相似文献   

16.
Summary A 1290MHz wind profiler (Radian Lap-3000), at present one of three operational wind profilers in Austria, is operated at Vienna airport. In spite of quality assurance procedures as consensus averaging included in the data evaluation process from profiler raw data, some spurious peaks of wind speed and unrealistic changes of the wind vector in time or height occur in the wind measurements. This is especially true for sampling intervals of only 5 minutes which are used to resolve the temporal evolution of summer thunderstorms and frontal passages. Averaging periods of only a few minutes are rather the lower limit apt for wind profiler observations and result in a low data availability of 28%, whereas about 55% of data (relative to the maximum height range according to the parameter setting) are available for 10 to 30 minutes profiles.Approaches to a posteriori quality control using checks for automatic error detection are proposed and tested on a one and a half year data-set: Flagging data when the three-dimensional wind divergence exceeds a predefined limit (0.5s–1) is in most cases successful in combination with thresholds for wind speed (2 times the median of the daily data-set) or wind shear (0.2s–1).The wind profiler data is compared to wind profiles from the next radiosonde station where soundings are launched 4 times a day at Hohe Warte, approx. 20km northwest, at the hill-side of the Viennese Woods. Deviations of about 1m s–1 in wind speed are found between the observations of the two systems. Differences between the wind profiles within the boundary layer can be explained by local differences in the wind regime observed at the airport and the radiosounding – blocking effects of the Viennese Woods during south-easterly flow. Comparing the profiler data to radiosoundings on a monthly basis gives a tool to monitor the profiler performance.  相似文献   

17.
Summary This paper is concerned with sea/land-breeze systems over relatively flat tropical islands to the north of continental Australia. The purpose of this study is to contribute to the relatively small body of knowledge on tropical island sea/land-breeze systems in this region and to highlight their particular characteristics. The evolution and structure of coastal circulations over the Tiwi Islands, northern Australia are examined using observations made during the Maritime Continent Thunderstorm Experiment (MCTEX), November/December 1995. During the transition period between dry and wet (monsoon) seasons, strong diurnal surface heating dominates the local meteorology. Thermally modified pressure differences across the coastline are seen to control the timing, direction and intensity of local winds. The evolution and structure of the resulting circulations appear to be affected greatest by tropospheric stability and friction, while the Coriolis force, synoptic winds and topography are of much less importance in this case. Consequently, even small differences in surface properties seem to produce strong and well defined local wind circulations. The depth of the sea breeze averaged 1200 m, while the land breeze was considerably shallower (290 m). Return flows were evident in both circulations, although better defined in land breeze cases. Day to day variation in vertical structure was considerable and appeared to be controlled by stability in the lower troposphere. Spatial patterns of surface temperature, pressure and wind show formation of an island heat low by day and a cool high pressure centre at night, resulting in island scale convergence and divergence, respectively. Received February 27, 2000/Revised October 16, 2000  相似文献   

18.
The Florida peninsula has the highest annual number of days with thunderstorms in the United States, partly due to sea breeze convergence. A three-dimensional mesoscale planetary boundary layer (PBL) model with the E- turbulence closure is used to investigate the relationship between sea breeze convergence and convection over the peninsula for two ambient wind cases during typical summer days.It is found that the spatial and temporal variation of the sea breeze convergence zones and the associated convective activities depend to a large extent on the direction and magnitude of the ambient wind. For the case of southeasterly ambient winds, a strong convergence zone and hence significant rainfall occur primarily along the west coast of the peninsula. The convergence zone and the associated rainfall shift towards the east coast for the case of southwesterly ambient winds. These are in agreement with the observations. In contrast to the southeasterly and southwesterly ambient winds, an intense convergence zone and rainfall occur near both coastlines of the peninsula under light ambient winds.It is also found that lake Okeechobee has a substantial influence on south Florida's mesoscale weather. A cloudless region is always present over the lake at least until late afternoon due to its own lake breeze circulation. Finally, increased roughness of the land surface appears to influence the temporal and spatial variation of the convection by determining the intensity of the vertical turbulent transport of heat and momentum.  相似文献   

19.
Summary ¶During the Post-TAMEX forecast experiment of Taiwan in 1992, a mesoscale convective system (MCS) developed on June 5–6 over southern China. As this system matured, it produced readily apparent cirrus outflow on satellite imageries while the upper level flow also exhibited a diffluent pattern. The purpose of the current study is to examine the possible changes in its environment associated with the development of this MCS.By using 12-h data from 1200 UTC June 5 to 1200 UTC June 6, objective analyses were performed for a 1°×1° latitude/longitude grid using sounding data and a low-pass filter. To facilitate the diagnosis, a band-pass filter was further applied to separate mesoscale features from macroscale ones, while the apparent heat source and apparent moisture sink defined by Yanai et al (1973) were also calculated.Results suggest that the MCS exerted clearly discernable effects on its environment. The latent heat release led to the development of a warm core and mesoscale high-pressure disturbance at upper levels when the system matured. Ageostrophic winds and diffluent flow patterns together with strong anticyclonic vorticity at 200hPa near the MCS were associated with the mesohigh. After the mature stage, weak cooling occurred above 350hPa, likely due to radiative emission from the cloud top. However, a mid-level cyclonic vortex, often present in MCSs over the North America, was not apparent here due to weak environmental vorticity and small Coriolis parameter f. The level of maximum divergence was initially located at 500hPa, but rose to 200hPa as the MCS matured. In response, the upward motion not only intensified, but the level at which strongest rising occurred also ascended from 700 to 350hPa. Results from the apparent heat source and moisture sink calculation suggest that this slow ascent of maximum heating was partially due to vertical transport of sensible heat by updrafts.During the MCSs mature stage, under the stratiform clouds to the west of the strongest convection, a cold mesohigh formed at the surface due to evaporative cooling in downdrafts, and a gust front appeared along the leading edge of the outflow boundary. A trailing mesolow was also observed, likely due to near-adiabatic warming in drier downdrafts since no precipitation was associated with it.Received April 11, 2002; revised May 27, 2002; accepted July 14, 2002 Published online: April 10, 2003  相似文献   

20.
Summary Numerical simulations of the 24 October 1999 south foehn (MAP-IOP 10) are performed with the Penn State/NCAR mesoscale model MM5 for the Wipp Valley and the adjacent parts of the Inn Valley. The model is run in a multiple-nest configuration, the area of interest being resolved at a mesh size of 800m in most experiments. The study serves to complement an earlier work in which typical flow features of the foehn in the Wipp Valley region were investigated by means of idealized simulations, assessing whether it is possible to reproduce the temporal evolution and the spatial structure of a particular foehn case. A further objective of the paper is to examine the dependence of the model performance on the horizontal resolution, giving some information which resolution will probably be needed for future high-resolution forecasts.An encouragingly large part of the observed flow features could be well reproduced in the simulations. Except for a small region to the east of Innsbruck, the foehn breakthrough is predicted correctly to within an hour. The spatial structure of the so-called pre-foehn, an enhanced westerly wind occurring at Innsbruck prior to the breakthrough of the foehn, also agrees very well with the observations. Moreover, the maximum extent of the foehn in the Inn Valley, the structure of the gravity wave field above the Wipp Valley and the upvalley progression of a shallow cold front in the evening are consistent with the observations. Except for a few places where the airmass boundary between the warm foehn air and the adjacent colder air is not captured correctly throughout the time, the simulated surface temperatures range within 2K of the observed values. Discrepancies between the model results and the observations are found in the vicinity of Innsbruck where a flow-splitting phenomenon induces a very complex flow pattern at low levels. Another source of problems is the surface potential temperature along the Wipp Valley. The observed potential-temperature increase between the Brenner Pass and Innsbruck, which appears to be related to turbulent vertical mixing of stably stratified air, is underestimated by the model. Reducing the horizontal resolution from 800m to 1.4km deteriorates the model performance in marginally resolved side valleys, but the results obtained for the Wipp Valley and the Inn Valley are still of high quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号