首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Summary Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction, and to be lifted above local thermally generated circulations including a lake breeze. Towards evening, the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings. Received January 23, 2001 Revised October 17, 2001  相似文献   

2.
Thermodynamic characteristics and temporal variation of alpine lake breezes in the eastern Southern Alps are examined. Research was conducted in a large glacially excavated basin dominated by an 87 square kilometre melt-water lake as part of a study of windblown dust dispersion. The surrounding mountain ranges were found to shelter the lake basin from most synoptic winds, thereby allowing local and regional thermally generated circulations to develop to ridge height, approximately 1300m above the surrounding landscape. During favourable synoptic conditions the local lake breeze becomes embedded within the regional valley wind forming an extended lake breeze. Tethersonde flights during these conditions made using a kite based sounding system identified both stable internal (SIBL) and thermal internal boundary layer (TIBL) conditions over the down wind shoreline. Two equations for estimating the height of both boundary-layer types were tested against observations and found to provide good first order predictive estimates of boundary-layer height.  相似文献   

3.
Summary High-resolution numerical model simulations have been used to study the local and mesoscale thermal circulations in an Alpine lake basin. The lake (87km2) is situated in the Southern Alps, New Zealand and is located in a glacially excavated rock basin surrounded by mountain ranges that reach 3000m in height. The mesoscale model used (RAMS) is a three-dimensional non-hydrostatic model with a level 2.5 turbulence closure scheme. The model demonstrates that thermal forcing at local (within the basin) and regional (coast-to-basin inflow) scales drive the observed boundary-layer airflow in the lake basin during clear anticyclonic summertime conditions. The results show that the lake can modify (perturb) both the local and regional wind systems. Following sunrise, local thermal circulations dominate, including a lake breeze component that becomes embedded within the background valley wind system. This results in a more divergent flow in the basin extending across the lake shoreline. However, a closed lake breeze circulation is neither observed nor modelled. Modelling results indicate that in the latter part of the day when the mesoscale (coast-to-basin) inflow occurs, the relatively cold pool of lake air in the basin can cause the intrusion to decouple from the surface. Measured data provide qualitative and quantitative support for the model results.  相似文献   

4.
Summary Regional and local scale windfield and air mass characteristics during two distinct synoptic foehn wind events over southern New Zealand are examined. The Southern Alps were observed to effectively block low level onshore gradient northwesterly airflow and to channel it through both Cook and Foveaux Straits. Blocking of the onshore synoptic northwesterly airstream also resulted in barrier jet formation along the western slopes of the Southern Alps. This feature of the regional windfield has not previously been documented and develops during favourable conditions to a height of between 1500 to 1800 m above sea level. In the immediate lee of the Southern Alps at Lake Tekapo, classic foehn conditions such as warm ambient air temperatures, low relative humidities and gusty winds were monitored throughout both foehn events examined. Differences in the local windfield were however observed, which reflect the importance of local topography on lee side windfield dynamics during foehn events. Spillover of precipitation to the lee of the mountains was monitored in the latter stages of each case study and appeared to be associated with the passage of the cold front over the Southern Alps. Observations made by this investigation have a number of applied and theoretical implications with respect to meso-scale modelling, orographic rainfall distribution and forecasting.With 12 Figures  相似文献   

5.
大理苍山—洱海局地环流的数值模拟   总被引:4,自引:2,他引:2  
许鲁君  刘辉志  曹杰 《大气科学》2014,38(6):1198-1210
利用耦合了湖泊模型的WRF_CLM模式模拟了秋季大理苍山—洱海地区的局地环流特征。结果表明:模式对近地面温度、风向、风速的模拟与观测基本一致,模拟结果能较好地再现该地区山谷风和湖陆风相互作用的局地环流特征。在秋季,大理苍山的谷风起止时间为08:00~17:00(北京时,下同),湖风起止时间为09:00~19:00。局地环流受高山地形及洱海湖面影响明显,山谷风形成早于湖陆风1 h,夜间山风、陆风强盛于白天谷风、湖风。白天苍山谷风与洱海湖风的叠加作用会驱动谷风到达2600 m的高度,而傍晚最先形成的苍山山风则会减弱洱海的湖风环流。夜间盆地南部在两侧山风、陆风的共同作用下,形成稳定而持续的气旋式环流。日出以后,对流边界层迅速发展,边界层高度逐渐增高。陆地17:00温度达到最高,边界层高度也达到峰值2000 m,之后逐渐降低。日落后形成稳定边界层,边界层高度在夜间基本保持在100 m。相对于陆地,湖面白天边界层高度低300 m,夜间边界层高度高100 m。  相似文献   

6.
河谷风演变过程的数值模拟   总被引:1,自引:0,他引:1  
王浩 《高原气象》1993,12(1):1-11
  相似文献   

7.
The flow structure at the intersection between the Rhine and the Seez valleys nearthe Swiss city of Bad Ragaz has been documented by means of wind and pressuremeasurements collected from 9 September to 10 November 1999 during the MesoscaleAlpine Programme (MAP) experiment. To understand better the dynamics of theageostrophic winds that develop in this part of the Rhine valley, some key questionsare answered in this paper including the following: (i) How does air blow at theintersection of the Rhine and Seez valleys? and (ii) what are the dynamical processes(mechanical or thermal) driving the flow circulations in the valleys? Statistical analysis of the wind and pressure patterns at synoptic scale and at the scaleof the valley shows that five main flow patterns, SE/S, NW/W, NW/N, NW/S, SE/N(wind direction in the Seez valley/wind direction in the Rhine valley) prevail. The SE/S regime is the flow splitting situation. It is mainly driven by a strong pressure gradient across the Alps leading to foehn, even though some nocturnal cases are generated bylocal thermal gradients. The NW/W and NW/N regimes are mechanically forced bythe synoptic pressure gradient (as the flow splitting case). The difference between thetwo regimes is due to the synoptic flow direction [westerly (northerly) synoptic flowfor the NW/W (NW/N) regime], showing that the Rhine valley (particularly from BadRagaz to Lake Constance) is less efficient in channelling the flow than the Seez valley.The NW/S (occurring mainly during nighttime) and SE/N (occurring mainly duringdaytime) regimes are mainly katabatic flows. However, the SE/N regime is also partlyforced at the synoptic scale during the foehn case that occurred between 18 October and 20 October 1999, with a complex layered vertical structure. This analysis also shows that, contrary to what was observed in a broad section of theupper Rhine valley near Mannheim, very few countercurrents were observed near BadRagaz where the valley width is much smaller.  相似文献   

8.
中国地区山谷风研究进展   总被引:1,自引:0,他引:1  
田越  苗峻峰 《气象科技》2019,47(1):41-51
随着城市化的发展,越来越多的城市建立在山区附近或山谷之中。受地理环境和气象条件等因素影响,各地山谷风特征各不相同。山谷风对局地风场、气候特征有着重要作用,与逆温和污染物浓度变化也具有良好相关。本文从山谷风研究的主要手段—观测、理论和数值模拟出发,重点回顾了国内山谷风研究成果,并讨论了与其他中尺度环流(海陆风、湖陆风、城市热岛、植被风、冰川风环流)的相互作用,以及包括山谷风在内的山地环流对大气污染的影响。最后对国内研究进展进行总结,并提出了一些还需深入研究和探讨的问题。  相似文献   

9.
Sea-breeze dynamics in the Marseille area, in the south of France, is investigated in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. Under particular attention in this paper is the sea-breeze channelling by the broad Rhône valley and the narrow Durance valley, both oriented nearly-north–south, i.e., perpendicular to the coastline, and its possible impact on the sea-breeze penetration, intensity and depth, which are key information for air pollution issues. One situation of slight synoptic pressure gradient leading to a northerly flow in the Rhône valley (25 June 2001) and one situation of a weak onshore prevailing synoptic wind (26 June 2001) are compared. The impact of the Rhône and Durance valleys on the sea-breeze dynamics on these two typical days is generalized to the whole ESCOMPTE observing period.The present study shows by combining simple scaling analysis with wind data from meteorological surface stations and Doppler lidars that (i) the Durance valley always affects the sea breeze by accelerating the flow. A consequence is that the Durance valley contributes to weaken the temperature gradient along the valley and thus the sea-breeze circulation. In some cases, the acceleration of the channelled flow in the Durance valley suppresses the sea-breeze flow by temperature gradient inhibition; (ii) the Rhône valley does not generally affect the sea breeze significantly. However, if the sea breeze is combined with an onshore flow, it leads to further penetration inland and intensification of the low-level southerly flow. In this situation, lateral constriction may accelerate the sea breeze. Simple scaling analysis suggests that Saint Paul (44.35°N, about 100 km from the coastline) is the lower limit where sea breeze can be affected by the Rhône valley. These conclusions have implications in air quality topics as channelled sea breeze may advect far inland pollutants which may be incorporated into long-range transport, particularly in the Durance valley.  相似文献   

10.
In mountainous lake areas, lake–land and mountain–valley breezes interact with each other, leading to an "extended lake breeze". These extended lake breezes can regulate and control energy and carbon cycles at different scales. Based on meteorological and turbulent fluxes data from an eddy covariance observation site at Erhai Lake in the Dali Basin,southwest China, characteristics of daytime and nighttime extended lake breezes and their impacts on energy and carbon dioxide exchange in 2015 are investigated. Lake breezes dominate during the daytime while, due to different prevailing circulations at night, there are two types of nighttime breezes. The mountain breeze from the Cangshan Mountain range leads to N1 type nighttime breeze events. When a cyclonic circulation forms and maintains in the southern part of Erhai Lake at night, its northern branch contributes to the formation of N2 type nighttime breeze events. The prevailing wind directions for daytime, N1, and N2 breeze events are southeast, west, and southeast, respectively. Daytime breeze events are more intense than N1 events and weaker than N2 events. During daytime breeze events, the lake breeze decreases the sensible heat flux(Hs) and carbon dioxide flux(FCO_2) and increases the latent heat flux(LE). During N1 breeze events, the mountain breeze decreases Hs and LE and increases FCO_2. For N2 breeze events, the southeast wind from the lake surface increases Hs and LE and decreases suppress carbon dioxide exchange.  相似文献   

11.
On the Climate Impact of the Local Circulation in the Itaipu Lake Area   总被引:1,自引:0,他引:1  
The impact of the Itaipu Lake on the climate and local circulation is investigated here using the meteorological information available in the area. The Itaipu Lake is an artificial water reservoir of 1460 km2 (approximately 170 km by 7.5 km), formed in 1982 as part of the Itaipu Power Plant. It is situated on the Brazil-Paraguay frontier, in the central portion of Parana River Valley. The analysis of the available meteorological data (air and water temperatures, air relative humidity, precipitation and radiosonde soundings) provides observational evidences supporting the hypothesis that the Itaipu Lake presence has an important impact in the local circulation, inducing a local circulation with lake breeze characteristics showing horizontal wind divergence over the lake during daytime and convergence during nighttime. From the regional point of view, the Itaipu Lake formation has reduced the thermal amplitude of the diurnal air temperature cycle. The precipitation data, investigated here, has not indicated any systematic effect associated to the lake formation. The reason for the apparent inconsistency is that others phenomena (e.g., valley-mountain circulation and El Niño events) could be masking the impact of the lake formation on the rain deficit in the region.  相似文献   

12.
Li  Mengmeng  Wang  Tijian  Xie  Min  Zhuang  Bingliang  Li  Shu  Han  Yong  Cheng  Nianliang 《Theoretical and Applied Climatology》2017,128(3-4):999-1013

Through regulating the land–atmosphere energy balance, urbanization plays an important role in modifying local circulations and cross-border transport of air pollutants. The Beijing–Tianjin–Hebei (BTH) metropolitan area in northern China is frequently influenced by complex atmospheric thermal circulations due to its special topography and geographic position. In this study, the Weather Research and Forecasting (WRF) model combined with remote sensing is used to explore the urbanization impacts on local circulations in the BTH region. The urban heat island (UHI) effect generated around Beijing and Tianjin shows complex interactions with local thermal circulations. Due to the combined effects of UHI and topography, the UHI circulation around Beijing and valley breeze at the southern slopes of Yan Mountain are coupled together to reinforce each other. At the coastal cities, the increased land/sea temperature gradient considerably accelerates the sea breeze along Bohai Bay and moves the sea breeze front further inland to reach as far as Beijing. This study may lay a foundation for the better understanding of air pollutant dispersion on complex terrain.

  相似文献   

13.
A puff model is developed in this study, which simultaneously considers the Monte-Carlo technique, the time and space changes of atmospheric parameters, multiple continuity pollutant sources, linear chemical trans-formation and removal of pollutants, and the effect of complex terrain. The continuously observed turbulent statistical quantities, Lagrangian time scales, mesoscale flow field, and mixing layer depth in the PBL in the Dianchi area in China are directly put into the model, and the diurnal variations of air pollution are forecasted, which are dominated by such mesoscale local circulations as mountain and valley breeze, land and lake breeze, and city heat island (Kunming City). The results show that in the case of inputting the same data, they are in good agreement with the experimental data, as well as with the results of the three-dimensional advection-diffusion model (TD-ADM); the diurnal variation of mesoscale local circulation results in the obvious diurnal variation of mesoscale concentration distribution patterns; the Dianchi lake (appr. 300 km2) has a considerable effect on the distribution of air pollution in the area.  相似文献   

14.
A two week observation program was carried out in the summer of 1981 in the Lake Kinneret (Northern Israel) area. The main purpose was to study the mesoscale flow patterns in and around the lake valley and compare them with the results of mesoscale model simulations in the same area. The main effort of the program was directed to the determination of three dimensional trajectories from various points around the valley. For that purpose a new method for the deployment of relatively long term no-lift balloons was used. In addition, surface observations as well as upper air wind observations using pibals were taken at four fixed locations along a straight line across the lake valley. Based on previous studies using surface observations and model results it appeared that the flow regime was determined by the combination of three main mechanisms: the Mediterranean sea breeze, the lake breeze and the mountain-valley wind. This combination results in a daily cycle divided into three distinct flow regimes. The results of the present experiment confirm this basic classification as well as the general structure of the flow for each of the three regimes. The experiment also confirmed the assumption that the large scale synoptic flow has only a minor influence in the valley, and contributes only to the general direction of the winds. In spite of the overall agreement several deficiencies of the model simulations came to light as a result of the experiment. These have to do with the horizontal and vertical resolutions employed in the models, with the fact that all of them were two dimensional (even though several of the models are capable of three dimensional simulations), and with the fact that most of them use the hydrostatic approximation. Due to the lack of appropriate equipment no vertical soundings were performed in order to determine the thermal and humidity stratification. These will have to be completed in subsequent experiments in order to provide the missing data.  相似文献   

15.
VARYING SEASONS'' MESOSCALE WIND FIELD CIRCULATION IN HAINAN ISLAND   总被引:1,自引:1,他引:0  
Using a one-level numerical diagnostic model, the features of surface wind fields in Hainan Island and Leizhou Peninsula and maritime area around it are studied. In the experiments with prevailing synoptic situation for varying seasons there are obvious deflection flows, terrain slope drafts, convergence lines, sea/land breeze and mountain/valley breeze, and difference in season accounts for the features found in the mesoscale distribution.The complex terrain and seatland distribution in the area is shown to be the important cause for the formation of varying mesoscale circulation, and close relationships between local climatic distribution feature and mesoscale circulation are then revealed.  相似文献   

16.
Summary The present paper is the continuation of two recent studies investigating the foehn-like valley wind system around Mittenwald (Bavarian Isar Valley). We deal with the synoptic/mesoscale conditions causing the local foehn (“Minifoehn”), considering field campaigns from both the mesoscale and the climatological point of view. Furthermore, we describe the structure and further features of the local foehn at smaller scales, using both the results of the VERTIKATOR field campaign and numerical simulations. We obtain as a new result that the foehn-caused local warm air pool around Mittenwald induces slight nocturnal upvalley winds between an adjacent valley basin located some 8 km north of Mittenwald and the basin of Mittenwald. Furthermore, a weak northerly flow may also occur at Mittenwald prior to the onset of the Minifoehn. Numerical simulations indicate that the local pressure gradient responsible for this phenomenon is related to a gravity wave forming over the hill range southwest of Mittenwald. Observations within a five-year period indicate that Minifoehn frequently occurs when ambient winds coming from the southern sector are predominant, but, contrary to deep foehn, weather conditions with northerly synoptic-scale flows do not necessarily exclude the development of the local foehn which comes from the southwest. We also present further evidence that in the presence of southerly synoptic-scale winds, orographic gravity waves interact with the drainage flow. Another new result is that strong synoptic-scale westerly winds are able to suppress the occurrence of Minifoehn. In addition, the possible influence of the Inn Valley wind system as well as dynamical differences between the thermally driven up- and downvalley winds are briefly discussed.  相似文献   

17.
利用美国科罗拉多州立大学和MRC/ASTER发展的RAMS中尺度气象模式, 以NECP再分析资料为初、 边值条件, 在兰州城区东面设计了有湖和无湖两个试验, 做了72 h三重嵌套模拟试验, 分别模拟了两种情况下冬季兰州山谷地区的湖泊效应和大气边界层特征。模拟结果表明: (1)白天兰州山谷地区谷风在14:00强度达到最大。加入湖泊后, 14:00湖风强度增大, 湖风对谷风没有明显影响, 只对湖区及岸边附近的风场有影响。兰州山谷地区20:00以后山风开始出现, 到05:00左右北山山风的风速大于南山山风。05:00以后南山山风风速增大, 山谷以偏西风为主。加入湖泊后, 陆风也在夜间02:00左右表现的最为明显, 陆风和山风相互叠加, 导致兰州山谷东部地区西风风速增大; (2)加入湖泊后, 对周围地区气温的影响表现为夜间有增温作用, 增温作用随着离湖泊的距离渐远而减弱。在靠近湖区处夜间的近地面逆温强度减弱; (3)加入湖泊后, 对靠近湖面处空气相对湿度的影响表现为减小, 对靠近湖西岸陆地上近地面空气相对湿度的影响表现为先减小后增加, 这一点在夜间表现的最明显, 对靠近湖面处空气绝对湿度的影响表现为增加; (4)加入湖泊后, 湖区的净辐射和感热通量都减小, 湖的东西两岸的净辐射和感热通量都增大。在22:00到凌晨05:00之间, 靠近湖西岸的陆地上净辐射和感热通量也有所增大。  相似文献   

18.
The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed.  相似文献   

19.
洱海盆地水面与地面气象要素变化特征的比较   总被引:1,自引:0,他引:1  
依据大理国家气候观象台在洱海湖中建立的自动观测系统以及大理国家基本气象站观测资料,对2008至2009年的风、温、湿、压、降水要素的日变化和季节变化特征进行了对比分析。结果表明:受局地复杂地形和洱海的影响,洱海盆地近地层常年存在湖陆风、山谷风、峡谷风三者叠加效应引起的局地环流。水面盛行风向白天以东南风为主,夜间以东南风和西西南风为主,而地面白天以东东南风为主,夜间以静风和西西北风为主。年平均风速小,水面为2.9m/s,地面为2.4m/s。水面年平均气温为16.8℃,而地面为16.0℃。两观测点气温、相对湿度、气压均表现出明显的日变化特征,水面气温、相对湿度出现极大值和极小值的时间均比地面晚。全年降水多集中在5—10月。  相似文献   

20.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号