首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead isotope analyses were performed on 26 polymetallic massive sulphide deposits of the Iberian Pyrite Belt, as well as on overlying gossans and associated volcanic rocks. All the massive sulphide deposits (except for Neves-Corvo), and nearly all the volcanic rocks show very similar isotopic compositions grouped around 18.183 (206Pb/204Pb), 15.622 (207Pb/204Pb) and 38.191 (208Pb/204Pb), indicating that most of the ore deposit lead was derived from the same continental crust environment as the associated volcanic rocks. The isotopic compositions are representative of the average south Iberian crust during the Devonian to Early Carboniferous (Dinantian), and their constancy implies a homogenization of the mineralizing fluids before the deposition of the massive sulphides from hydrothermal fluids circulating through interconnected regional fracture systems. This isotopic constancy is incompatible with multiple, small, independent hydrothermal cells of the East Pacific Rise type, and fits much better with a model of hydrothermal convections driven by “magmatic floor heating”. Neves-Corvo is the only south Iberian massive sulphide deposit to have a heterogeneous isotopic composition with, in particular, a highly radiogenic stanniferous ore (206Pb/204Pb of the cassiterite is >18.40). A model of lead mixing with three components is proposed to explain these variations: (1) one derived from the Devonian to Early Carboniferous (Dinantian) continental crust that generated all the other massive ores; (2) an Eohercynian stanniferous mineralization partly remobilized during the formation of the massive sulphides, but independent of them; and (3) a Precambrian continental crust component. The juxtaposition of three different sources places Neves-Corvo in a specific paleogeographic situation that could also explain its mineralogical specificity. The geodynamic context that best explains all the obtained isotopic results is one of an accretionary prism. The fact that lead isotope signatures of the gossans are almost identical to those of the underlying massive sulphides means that this technique could be a useful exploration tool for the Iberian Pyrite Belt.  相似文献   

2.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

3.
The Iberian Pyrite Belt (IPB), SW Iberian Peninsula, Spain and Portugal, one of the most famous and oldest mining districts in the world, includes several major concentrations of massive sulphides, unique on Earth (e.g., Riotinto, Neves Corvo), as well as a large number of smaller deposits of this same type. All these deposits, in spite of their general similarities, show significant differences in geological setting, age, relations to country rocks, hydrothermal alteration, mineralogy and geochemistry. As a consequence of a review of the available data in the IPB, together with new findings on volcanism, hydrothermal alteration and ore mineralogy, we propose a modified genetic scenario, that can account particularly for the diversity of the geological situations in which sulphide deposits occur, as well as for their mineralogical and petrological diversity. It is concluded that there is no direct genetic relationship between felsic volcanic activity and massive sulphide deposition in the IPB, and that most of the massive sulphide bodies, including all of the giant ones, are closely related to hydrothermal vents, being therefore proximal. The available isotopic data yield additional genetic information: (a) Homogeneous lead isotope values indicate a single (or homogenized) metal source; (b) sea and connate water are the fluid reservoirs for hydrothermal input, and (c) bacterial reduction of sulphur is the most probable cause of differences in δ34S between stockwork and massive sulphide mineralizations. Finally, current geodynamic models suggested for the IPB are discussed. It is suggested that an intracontinental, ensialic rift or pull-apart environment is the most probable genetic environment for the IPB mineralizations.  相似文献   

4.
Sea water basalt interaction in spilites from the Iberian Pyrite Belt   总被引:2,自引:0,他引:2  
Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1). The observed 18O whole rock values range from +0.87 to +15.71 corresponding to positive isotopic shifts of +5 to +10, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.  相似文献   

5.
Riebeckite-arfvedsonite amphiboles occur in very low-grade metamorphosed doleritic sills at various localities within the Iberian Pyrite Belt. The alkali-amphiboles grew during sub-solidus hydrothermal spilitization of basalt associated with submarine massive sulphide ore formation. The riebeckite-arfvedsonite is only very rarely preserved, being converted to albite-chlorite during regional metamorphism. In the South Portuguese zone Hercynian regional metamorphic grade increases in a northward direction from zeolite facies south of the Pyrite Belt through prehnite-pumpellyite facies to the greenschist facies in its northernmost zone. Compositional and mineralogical data indicate a geothermal gradient in the order of 40–50 °C/km.Volcanism in the Pyrite Belt is essentially representative of a bimodal association of twoleiitic to alkalic basalt and dacite/rhyolite. Geochemical data for the Pyrite Belt mafic meta-volcanics contrast with available data for subduction related volcanic suites in orogenic belts but exhibit similarities with the basaltic members of basalt-rhyolite associations found in areas of extensional tectonics. It is proposed that the Iberian Pyrite Belt volcanism represents magmatic activity in an intra-continental basin undergoing rifting during the late Devonian and lower Carboniferous times. On leave from: Mineralogia e Geologia, Faculdade de Ciencias, Lisboa-2, Portugal  相似文献   

6.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   

7.
Re-Os isotopes were used to constrain the source of the ore-forming elements of the Tharsis and Rio Tinto mines of the Iberian Pyrite Belt, and the timing of mineralization. The pyrite from both mines has simila]r Os and Re concentrations, ranging between 0.05–0.7 and 0.6–66 ppb, respectively. 187Re/188Os ratios range from about 14 to 5161. Pyrite-rich ore samples from the massive ore of Tharsis and two samples of stockwork ore from Rio Tinto yield an isochron with an age of 346 ± 26 Ma, and an initial 187Os/188Os ratio of about 0.69. Five samples from Tharsis yield an age of 353 ± 44 Ma with an initial 187Os/188Os ratio of about 0.37. A sample of massive sulfide ore from Tharsis and one from Rio Tinto lie well above both isochrons and could represent Re mobilization after mineralization. The pyrite Re-Os ages agree with the paleontological age of 350 Ma of the black shales in which the ores are disseminated. Our data do not permit us to determine whether the Re-Os isochron yields the original age of ore deposition or the age of the Hercynian metamorphism that affected the ores. However, the reasonable Re-Os age reported here indicates that the complex history of the ores that occurred after the severe metamorphic event that affected the Iberian Pyrite Belt massive sulfide deposits did not fundamentally disturb the Re-Os geochronologic system. The highly radiogenic initial Os isotopic ratio agrees with previous Pb isotopic studies. If the initial ratio is recording the initial and not the metamorphic conditions, then the data indicate that the source of the metals was largely crustal. The continental margin sediments that underlie the deposits (phyllite-quartzite group) or the volcanic rocks (volcanogenic-sedimentary complex) in which the ores occur are plausible sources for the ore-forming metals and should constrain the models for the genesis of these deposits. Received: 15 March 1999 / Accepted: 26 July 1999  相似文献   

8.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

9.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

10.
We recently showed that silicon isotopic fractionation in banana (Musa acuminata Colla, cv Grande Naine) was related to phytolith production, and therefore to silica content in plant. The present study focuses on isotopic fractionation between the different plant parts. Silicon isotopic compositions were measured using a Nu plasma multicollector plasma source mass spectrometer (MC–ICP–MS) operating in dry plasma mode. The results are expressed as δ29Si relatively to the NBS28 standard, with an average precision and accuracy of ± 0.08‰ (± 2σ). On mature banana (Musa acuminata Colla, cv Grande Naine) from Cameroon, δ29Si ranged from + 0.13‰ in the petiole to + 0.49‰ in the lamina, yielding to a 0.36‰ change towards heavier isotopic composition in the upper parts of the plant. This strongly accords with results obtained on in vitro banana plantlets cultivated in hydroponics, where the δ29Si increase from pseudostems to lamina is 0.26‰. These preliminary results on in situ banana show a trend of intra-plant fractionation comparable with that of in vitro hydroponics banana plantlets and with previous data obtained on bamboo.  相似文献   

11.
The Karacadağ (Kulu-Konya) area is one of the main volcanic provinces in Central Anatolia. The Karacadağ volcanites are composed of large volumes of andesitic-dacitic lavas associated with pyroclastics and small volumes of alkali basalt, trachybasalt and trachyandesite lavas. Two groups of volcanic rocks can be distinguished: (1) calcalkaline rocks including andesites and dacites, and (2) alkaline rocks including basalts, trachybasalts and trachyandesites. 40Ar/39Ar ages show that the Karacadağ volcanites were erupted during Early Miocene (ca.18–19 Ma) and suggest that alkaline volcanites succeed shortly afterwards calcalkaline volcanites. Major oxides and trace elements plotted versus SiO2 suggest fractionation of hornblende, Fe–Ti oxide and apatite for calcalkaline volcanic rocks and olivine, clinopyroxene and Fe–Ti oxide for alkaline volcanic rocks in the magmatic evolution. The incompatible trace element patterns of the calcalkaline volcanites show enrichment of LILEs (Sr, K, Rb, Ba and Th) and negative HFSEs (Nb, Ta) anomalies suggesting an enriched lithospheric source by a subduction-related process. On the other hand, alkaline volcanites show enrichment of both LILEs and HFSEs suggesting an enriched lithospheric source by small volume melts from the asthenosphere. The rocks also have moderately fractionated REE patterns with (La/Lu)N ratios of 7–24 for calcalkaline and 6–17 for alkaline volcanites. Moreover, the volcanites have relatively low 87Sr/86Sr(t) ratios for between 0.703782 and 0.705129, and high εNd(t) values between +2.25 and +4.49. Generally, the Sr–Nd isotopic compositions of the rocks range from the mantle array to bulk earth. All of these observations and findings suggest that the calcalkaline volcanites were formed in a subduction modified orogenic setting, and the alkaline volcanites in a within-plate setting.  相似文献   

12.
A new 3D geological model and interpretation of structural evolution of the Rio Tinto world-class VMS deposit are presented in this work. The Rio Tinto volcanogenic massive sulfide (VMS) deposit is located in the Spanish segment of the Iberian Pyrite Belt and is hosted by felsic porphyritic volcanic rocks and tuffs. Computer generated 3D modeling of the different orebodies and host rocks has been carried out using data from around 3000 drill-core logs, allowing us to build 93 cross-sections and 6 plants (both 50 m spacing). This has enabled us to recognize the geometry and relationships between the mineralization and the earliest Carboniferous transtensional tectonics through the development of an extensional pull-apart basin with two sub-basins separated by the NW-SE trending Eduardo Fault. The sub-basins, Cerro Colorado and San Dionisio, were limited by two E-W strike-slip faults, the Northern and Southern faults, and bounded in the east and west by the NW-SE-trending Nerva and Western faults, respectively. The generated pull-apart basin was first filled by a basaltic magmatism of mantle origin and later, following the deposition of the intermediate complex sedimentary unit, by rhyodacitic volcanic rocks of crustal origin. The evolution of the subsiding basins caused the development of an E-W oriented rollover anticline that affected these filling rocks.As a result of a counterclockwise rotation of the stress axes, the primitive pull-apart basin evolved into a basin affected by E-W transtensional sinistral shearing. Its northern and southern limits were favorable areas for increased hydrothermal fluid flow, which gave way to the huge concentration of VMS mineralization located near the limits. The Northern and, to a lesser degree, the Southern extensional faults thus become channel areas for feeding and discharging of the VMS and stockwork ores. The main mineralizing period was related to this stage. Subsequently, during the Variscan transpressional phase, the E-W extensional faults were reactivated as inverse faults, affecting the volcanic sequence of mafic to felsic composition and the intermediate complex sedimentary unit. Fault propagation folds developed above these faults, affecting the massive sulfides, the transition series and the Culm flysch sediments, with buttressing playing a significant role in the geometry of tectonically inverted structures. The VMS mineralization and cupriferous stockworks were folded and dismembered from the original conduits in the volcanic series, and a dextral reactivation of the NW-SE trending faults also developed.Finally, it should be emphasized that this new 3D geological model is an approach to provide a better insight into the 3D structure of the world-class VMS Rio Tinto deposit and could be a key-point for further studies providing a new tool to increase knowledge of the VMS mineralizations and exploration guidelines elsewhere in the IPB.  相似文献   

13.
The Maastrichtian–Danian limestones of the Yacoraite Formation (northwestern Argentina) show carbon and oxygen isotopic values consistent with shallow marine conditions. The members of the formation respond to different sedimentary environments and are characterised by distinctive stable isotopes and geochemistry. The basal Amblayo Member is composed of high-energy dolomitic limestones and limestones with positive isotopic values (+2‰ δ13C, +2‰ δ18O). The top of the member reveals an isotopic shift of δ13C (−5‰) and δ18O (−10‰), probably related to a descent in the sea level. The sandy Güemes Member has isotopically negative (−2‰ δ13C, −1‰ δ18O) limestones, principally controlled by water mixing, decreased organic productivity, and compositional changes in the carbonates. The isotopically lighter limestones are calcitic, with a greater terrigenous contribution and different geochemical composition (high Si–Mn–Fe–Na, low Ca–Mg–Sr). These isotopic and lithological changes relate to the Cretaceous–Palaeogene transition. The Alemanía Member, composed of dolomitic limestones and pelites, represents a return to marine conditions and shows a gradual increase in isotopic values, reaching values similar to those of the Amblayo Member. The Juramento Member, composed of stromatolite limestones, shows isotopic variations that can be correlated with the two well-defined, shallowing-upward sequences of the member.  相似文献   

14.
The Prince Lyell copper-gold-silver deposit occurs in the late Cambrian Mt Read Volcanics, at Queenstown, Tasmania. Steeply plunging, broadly conformable lenses of disseminated and stringer pyrite-chalcopyrite mineralisation occur in quartz-sericite-chlorite rocks derived from intense alteration of predominantly felsic lavas and volcaniclastic rocks. Middle Devonian deformation has substantially modified primary sulphide textures.Although extensively fractured, pyrite grains in the ore have retained their original pre-deformation internal structure and chemistry which are revealed by etching and electron microprobe analysis. Earliest sulphide mineralisation produced oscillatory zoned, cobalt-rich pyrite (Pyrite I), coeval with chalcopyrite mineralisation. Cobalt-rich pyrite is commonly associated with Cambrian volcanic rocks in western Tasmania and suggests a volcanogenic origin for the ore fluids at Prince Lyell. Pyrite I was corroded by later hydrothermal fluids and reprecipitated as unzoned, trace element-poor pyrite (Pyrite II), commonly as overgrowths on Pyrite I cores. Minor amounts of a second cobalt-rich pyrite (Pyrite III) occurs with Pyrite II in composite pyrite overgrowths. Sulphur isotope ratios from all pyrite generations fall within a small range (3 to 11‰). In situ isotopic analyses showed no consistent δ34S variation between the various pyrite generations, suggesting recycling of sulphur derived from a single Cambrian volcanogenic source.Hematite alteration, derived from oxidised fluids possibly from the adjacent hematitic Owen Conglomerate, occurs in the structural footwall volcanics and the Great Lyell fault zone. Hematite inclusions in Pyrite II and III indicate that these pyrite generations occurred after or during deposition of the conglomerate. It is postulated that Pyrite II and III were deposited during waning volcanism, contemporaneous with Owen Conglomerate sedimentation in the late Cambrian or early Ordovician. The Great Lyell fault would have acted as a growth fault margin between a terrestrial basin, filling rapidly from the east, and the volcanic terrane to the west. The scenario raises the possibility that the concentration of mineral deposits and hematitic alteration along the Great Lyell fault resulted from the subsurface interaction of reduced volcanogenic fluids and oxidised basin waters along the growth fault contact.  相似文献   

15.
郑义  张莉  郭正林 《岩石学报》2013,29(1):191-204
新疆铁木尔特铅锌铜矿床位于阿尔泰造山带南缘克兰盆地内,矿体呈脉状产于康布铁堡组火山岩地层中.为准确厘定其成岩成矿时代,作者分别对矿区赋矿火山岩和含矿石英脉中的云母进行了年龄测定,获得2件火山岩样品的锆石LA-ICP-MS U-Pb年龄分别为396±5Ma和405±5Ma,2件黑云母样品的40 Ar/39 Ar坪年龄分别为240±2Ma和235±2Ma,相应的39Ar/36Ar-40Ar/36Ar等时线年龄分别为238±3Ma和233±3Ma,与坪年龄在误差范围内一致.据此,认为矿区内康布铁堡组火山岩形成于396~405 Ma,成矿作用发生于235~240Ma;成岩年龄早于成矿年龄约165Ma.因此,铁木尔特铅锌铜矿为典型的后生矿床,而不可能是同生VMS型矿床.考虑到成矿年龄稍晚于区域大规模变质作用(约250Ma),推测成矿作用与阿尔泰造山带碰撞造山作用有关.结合矿床地质特征和流体包裹体特征,认为铁木尔特铅锌铜矿为典型的陆陆碰撞体制下形成的造山型矿床.  相似文献   

16.
The lower valley of Changjiang, from Wuhan of the Hubei Province in the west to Zhenjiang of the Jiangsu Province in the east, contains more than 200 polymetallic (Cu–Fe–Au, Mo, Zn, Pb, Ag) deposits and is one of the most important metallogenic belts in China. This metallogenic belt, situated at the northern margin of the Yangzi craton and bordered by the Dabieshan ultrahigh pressure metamorphic belt to the north, consists mainly of Cambrian–Triassic marine clastic sedimentary rocks and carbonate and evaporite rocks, which overlay a Precambrian basement and are intruded by Yanshanian (205 to 64 Ma) granitoid intrusions and subvolcanic complexes. Repeated tectonism from Late Proterozoic to Triassic resulted in extensively developed networks of faults and folds involving the Cambrian–Triassic sedimentary strata and the Precambrian basement. The Yanshanian granitoid intrusions and subvolcanic complexes in the Lower Changjiang metallogenic belt are characterized by whole-rock δ18O of +8‰ to +10‰, initial 87Sr/86Sr of 0.704 to 0.708, and εNdt from −10 to −17 and have been interpreted to have originated from mixing between juvenile mantle and old crustal materials. Also, the Yanshanian granitoids exhibit eastward younging and increase in alkalinity (i.e., from older calc–alkaline in the west to younger subalkaline–alkaline in the east), which are related to oblique collision between the Yangzi and Sino-Korean cratons and tectonic evolution from early compressional to late extensional or rifting regimes. Most polymetallic deposits in the Lower Changjiang metallogenic belt are clustered in seven districts where the Yanshanian magmatism is particularly extensive: from west to east, Edong, Jiurui, Anqing–Guichi, Luzhong, Tongling, Ningwu and Ningzhen. Mineralization is characterized by the occurrence of three distinct types of orebodies in individual deposits: orebodies in Yanshanian granitoid intrusions, skarn orebodies at the contact zones between the Yanshanian intrusions and Late Paleozoic–Early Mesozoic sedimentary rocks, and stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata. The most important host sedimentary strata are the Middle Carboniferous Huanglong Formation, Lower Permian and Lower–Middle Triassic carbonate and evaporite rocks. The intrusion-hosted and skarn orebodies exhibit well-developed zonation in alteration assemblages, metal contents, and isotopic compositions within individual deposits, and apparently formed from hydrothermal activities related to the Yanshanian magmatism. The stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata have long been suggested to have formed from sedimentary or volcano-sedimentary exhalative processes in shallow marine environments. However, extensive research over the last 40 years failed to produce unequivocal evidence for syngenetic mineralization. On the basis of geological relationships and isotope geochemical characteristics, we propose a carbonate-hosted replacement deposit model for the genesis of these stratabound massive sulfide orebodies and associated skarn orebodies. This model suggests that epigenetic mineralization resulted from interactions between magmatic fluids evolved from the Yanshanian intrusions with carbonate and evaporite wall rocks. Mineralization was an integral but distal part of the larger hydrothermal systems that formed the proximal skarn orebodies at the contact zones and the intrusion-hosted orebodies. The stratabound massive sulfide deposits of the Lower Changjiang metallogenic belt share many features with the well-studied, high-temperature, carbonate-hosted replacement deposits of northern Mexico and western United States, particularly with respect to association with small, shallow granitoid complexes, structural and stratigraphic controls on mineralization, alteration assemblages, geometry of orebodies, metal association, metal zonation and isotopic systematics.  相似文献   

17.
Stable (δ13C and δ18O) and radiogenic 87Sr/86Sr isotopic data have been used to investigate the origin of cleat dawsonite (NaAlCO3(OH)2) in the Late Permian Wittingham Coal Measures of the Upper Hunter region in the Sydney Basin, New South Wales. The δ13CPDB values have a narrow range (− 1.7‰ to + 2.4‰), with an average of + 0.3‰, suggesting a magmatic source for the carbon. In contrast, δ18OSMOW values have a wide range (+ 13.6‰ to + 19.8‰), and decrease systematically with decreasing distance from a major intrusion. This systematic variation reflects establishment of localised hydrothermal cells. Water–rock interaction between fluids associated with these hydrothermal cells, and Rb-poor volcaniclastic detritus in the coal measures, produced mantle-like 87Sr/86Sr (0.705032 to 0.706464) in the dawsonite.  相似文献   

18.
The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.  相似文献   

19.
Mapping of the oxygen and carbon isotopic composition of hydrothermally altered wall rocks was conducted during blind ore prospecting for Pb---Zn skarn deposits in the Kamioka mining district, central Japan. The wall rocks consist of heterogeneous rock units. Oxygen and carbon isotope ratios were determined for 35 limestones and 33 silicate rocks from the area around the Mozumi deposit (3 km × 3 km) in the Kamioka mining district. The results (δ18Ospsmow of − 1.1 to + 17.3% and δ13Csppdb of − 5.0 to +4.8% for limestones, and δ18Ospsmow of −0.8 to + 12.5% for silicate rocks) show isotope zonations of the wall rocks, with lighter isotopic compositions toward the center of mineralization. The isotope zonations likely formed by interaction of thermal waters with the wall rocks during skarn mineralization. The isotopically light zone indicates a higher paleotemperature or higher water-to-rock ratios, and occurs in the footwall of the 7Gohi fault. This structure is spatially related to the distribution of orebodies, indicating that the fault was the main conduit of the ore-forming fluids. The oxygen and carbon isotopic compositions of limestones vary regularly across limestone bodies hosted by the silicate wall rocks, suggesting that the thermal waters were pervasive throughout the wall rocks at the time of mineralization.An isotopically light zone was also found in the southeastern corner of the study area, where significant mineralization had yet to be identified. This suggested an extension of the extinct hydrothermal system to this area, and the possibility of hidden orebodies underneath. Recent drilling in this area has intercepted a zone 45 m thick with a grade of 13.4% Zn, 0.03% Pb and 8 g per metric ton at about 380 m depth.  相似文献   

20.
Carbonaceous matter (CM) from ca. 3.5 Ga hydrothermal black cherts of the Pilbara Craton of Western Australia and the Barberton Greenstone Belt of South Africa yielded transmission electron microscopy (TEM) images that are suggestive of microbial remains and possible remnants of microbial cell walls. These are compared to a potential modern analogue, the hyperthermophilic Methanocaldococcus jannaschii, derived from an active seafloor hydrothermal environment and cultured under similar conditions. A striking resemblance to the early Archaean forms was evident in wall structure and thermal degradation mode. Cell disintegration of the cultures occurred at 100 °C marking the limits of life. Complete disintegration, deformation and shrinkage occurred at 132 °C. A multidisciplinary approach to the characterisation of the CM was undertaken using organic petrology, TEM coupled with electron dispersive spectral analysis (EDS), high resolution TEM (HRTEM) to determine molecular ordering, and elemental and carbon isotope geochemistry. Reflectance measurements of the CM to determine thermal stress yielded a range of values corresponding to several populations, and pointing to different sources and processes. The δ13C values of Dresser Formation CM (−36.5 to −32.1‰) are negatively correlated with TOC (0.13–0.75%) and positively correlated with C/N ratio (134–569), which is interpreted to reflect the relative abundance of high Ro/oxidised/recycled CM and preferential loss of 12C and N during thermal maturation. TEM observations, inferred carbon isotopic heterogeneity and isotope fractionations of −27 to −32‰ are consistent with the activity of chemosynthetic microbes in a seafloor hydrothermal system where rapid silicification at relatively low temperature preserved the CM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号