首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   


2.
Art F. White   《Chemical Geology》2002,190(1-4):69-89
Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area.

Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6×10−17 mol m−2 s−1 for biotite. Faster weathering rates of 1.8 to 3.6×10−16 mol m−2 s−1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering.  相似文献   


3.
We investigate the use of a ductile material with temperature-sensitive viscosity for thermomechanical modelling of the lithosphere. First, we consider the scaling of mechanical and thermal properties. For a normal field of gravity, the balance of stresses and body forces sets the stress scale, in proportion to the linear dimensions and the densities. The equation of thermal conduction sets the time scale. The activation enthalpy for creep sets the temperature scale; but the thermal expansivity provides an additional constraint on this temperature scale.

Gum rosin appears to be a suitable material for lithospheric modelling. We have measured its flow properties, at various temperatures, in a specially designed rotary viscometer with unusually low machine friction. The rosin is almost Newtonian. Strain rate depends upon stress to the power n, where 1.0 <n < 1.14. The viscosity varies over 5 orders of magnitude, from about 102 Pa s at 80°C, to about 107 Pa s at 40°C. The activation enthalphy is thus about 250 kJ/mol. Measured with a needle probe, the thermal conductivity is 0.113 ± 0.001 W m−1K−1; the thermal diffusivity, (6±3) ×10−7 m2 s−1. Calculated from X-ray profiles, the thermal expansivity is about 3 × 10−4 K−1. These thermal and mechanical properties make gum rosin suitable for thermomechanical models, where linear dimensions scale down by a factor of 106; time, by 1011; viscosity, by 1017; and temperature change, by 101.  相似文献   


4.
For the disposal of high-level waste (HLW) in a deep geological formation as Boom Clay, safety assessment studies have shown that long lived 79Se is one of the more critical fission products. Therefore, the knowledge of its migration properties (diffusion, retention) through the geological barrier (Boom Clay) is of paramount importance. The migration behaviour of selenium strongly depends on its speciation. Under reducing conditions, selenide would be the dominant species and selenium migration would mainly be controlled by the low solubility of Se(−II)-bearing minerals. However Se species are often found in redox disequilibrium and more oxidized species might also coexist. Therefore, the study of selenate migration requires attention, as it might be the most mobile selenium species in the host rock. Electromigration experiments performed with a 75Se-labeled selenate in Boom Clay indicate a high mobility for this species. The apparent diffusion coefficient (Dapp) of selenate in Boom Clay is estimated from electromigration experiments performed under different electric fields. Using two independent approaches, the value of Dapp for selenate is shown to fall in the range from 1.7×10−11 to 6.2×10−11 m2 s−1. Moreover, no reduction of selenate in Boom Clay was observed.  相似文献   

5.
We assessed the accumulation of uranium (VI) by a bacterium, Bacillus subtilis, suspended in a slurry of kaolinite clay, to elucidate the role of microbes on the mobility of U(VI). Various mixtures of bacteria and the koalinite were exposed to solutions of 8 × 10− 6 M- and 4 × 10− 4 M-U(VI) in 0.01 M NaCl at pH 4.7. After 48 h, the mixtures were separated from the solutions by centrifugation, and treated with a 1 M CH3COOK for 24 h to determine the associations of U within the mixture. The mixture exposed to 4 × 10− 4 M U was analyzed by transmission electron microscope (TEM) equipped with EDS. The accumulation of U by the mixture increased with an increase in the amount of B. subtilis cells present at both U concentrations. Treatment of kaolinite with CH3COOK, removed approximately 80% of the associated uranium. However, in the presence of B. subtilis the amount of U removed was much less. TEM–EDS analysis confirmed that most of the U removed from solution was associated with B. subtilis. XANES analysis of the oxidation state of uranium associated with B. subtilis, kaolinite, and with the mixture containing both revealed that it was present as U(VI). These results suggest that the bacteria have a higher affinity for U than the kaolinite clay mineral under the experimental conditions tested, and that they can immobilize significant amount of uranium.  相似文献   

6.
Maximum in situ weathering rates of basaltic glass measured at the El Malpais National Monument in New Mexico are on the order of 2–5×10−19 mol/cm2 s. Rates were calculated from backscattered electron (BSE) imaging of weathered porosity and are equivalent to 1.7–5% of the surface per 1000 years. Weathering is independent of glass composition but appears to increase with flow elevation at El Malpais. Measured rates represent weathering over 3000 years and are substantially lower than glass dissolution rates measured in the laboratory over much shorter time spans. Basaltic glass is a close chemical analogue to glass hosts proposed for encapsulation of high-level nuclear wastes. Radionuclide release rates predicted from the basis of in situ field rates are substantially less than those predicted from short-term laboratory experiments.  相似文献   

7.
We present results of computations on the interaction of solid-phase electrum–argentite–pyrite (weight ratios 210−5/ 210−3/1 and 210−5/410−2/1) association with Cl-containing aqueous moderately acid solutions (0.5m NaCl, pH = 3.08) at 300 °C and 500 bars. These data are a physicochemical basis for predicting the geochemical behavior of Au and Ag during the hydrothermal-metasomatic transformation of Au-Ag-pyrite. We also propose a technique of study of this process based on the phase equilibria of the subsystem Au–Ag–S with the aqueous solution at different liquid/solid (l/s) ratios, with the use of new graphic diagrams. The relationship of the composition of the solid-phase association with l/s ratio in real boundary conditions (Au = 17 ppm, mAu/mAg = 10–3.57–10–2.28) is shown. The maximum l/s values for complete leaching of gold and silver (l/smax = 200–800) are estimated. It has been established that argentite is the first to dissolve when mAu/mAg(s) > mAu/mAg(sol), and electrum, when mAu/mAg(s) < mAu/mAg(sol).

The experimental results showed that at 300 °C, the conversion of electrum (NAu = 300‰) nonequilibrated with pyrite into an Au-richer form (NAu = 730‰) and argentite follows an intricate kinetic scheme. Using the Pilling-Bedwords kinetic equation for processing data yielded the process rate constant K = 2.8(±0.5)10−5 g2cm−4day−1. With this equation, the time of the complete conversion of 200 μm thick flat gold grains is 604 days. These data evidence a significant role of kinetic factors in hydrothermal-metasomatic processes involving native gold, which requires combination of thermodynamic and kinetic approaches on the construction of geologo-genetic models for hydrothermal sulfide formation.  相似文献   


8.
Far-from-equilibrium batch dissolution experiments were carried out on the 2000–500, 500–250, 250–53 and 53–2 μm size fractions of the mineral component of the B horizon of a granitic iron humus podzol after removal of organic matter and secondary precipitates. The different size fractions were mineralogically and chemically similar, the main minerals present being quartz, alkali and plagioclase feldspar, biotite and chlorite. Specific surface area increased with decreasing grain size. The measured element release rates decreased in the order 53–2>>>2000–500>500–250>250–53 μm. Surface area normalised element release rates from the 2000–500, 500–250 and 250–53 μm size fractions (0.6–77×10−14 mol/m2/s) were intermediate between literature reported surface area normalised dissolution rates for monomineralic powders of feldspar (0.1–0.01×10−14 mol/m2/s) and sheet silicates (100×10−14 mol/m2/s) dissolving under similar conditions. Element release rates from the 53–2 μm fraction (400–3000×10−14 mol/m2/s) were a factor of 4–30 larger than literature reported values for sheet silicates. The large element release rate of the 53–2 μm fraction means that, despite the small mass fraction of 53–2 μm sized particles present in the soil, dissolution of this fraction is the most important for element release into the soil. A theoretical model predicted similar (within a factor of <2) bulk element release rates for all the mineral powders if observed thicknesses of sheet silicate grains were used as input parameters. Decreasing element release rates with decreasing grain size were only predicted if the thickness of sheet silicates in the powders was held constant. A significantly larger release rate for the 53–2 μm fraction relative to the other size fractions was only predicted if either surface roughness was set several orders of magnitude higher for sheet silicates and several orders of magnitude lower for quartz and feldspars in the 53–2 μm fraction compared to the other size fractions or if the sheet silicate thickness input in the 53–2 μm fraction was set unrealistically low. It is therefore hypothesised that the reason for the unpredicted large release rate from the 52–3 μm size fraction is due to one or more of the following reasons: (1) the greater reactivity of the smaller particles due to surface free energy effects, (2) the lack of proportionality between the BET surface area used to normalise the release rates and the actual reactive surface area of the grains and, (3) the presence of traces quantities of reactive minerals which were undetected in the 53–2 μm fraction but were entirely absent in the coarser fractions.  相似文献   

9.
Cylindrical specimens of fine Ottawa sand (A.S.T.M. designation C-109), compacted at the optimum moisture content and saturated before unidirectional freezing, have been tested in uniaxial compression at a cold room temperature of —5.5°C and strain rates between 10−7 and 10−2 s−1. The results agree with an extrapolation of data obtained by Sayles and Epanchin [1], but are much higher than those obtained by both Goughnour and Andersland [2] and Perkins and Ruedrich [3] at strain rates below 10−5 s−1. There is evidence that this may be due to variation in total moisture (ice) content, the conditions under which the specimens were frozen (closed system or an open system) and to the end effects at the platen—specimen interface.  相似文献   

10.
The dissolution and precipitation rates of boehmite, AlOOH, at 100.3 °C and limited precipitation kinetics of gibbsite, Al(OH)3, at 50.0 °C were measured in neutral to basic solutions at 0.1 molal ionic strength (NaCl + NaOH + NaAl(OH)4) near-equilibrium using a pH-jump technique with a hydrogen-electrode concentration cell. This approach allowed relatively rapid reactions to be studied from under- and over-saturation by continuous in situ pH monitoring after addition of basic or acidic titrant, respectively, to a pre-equilibrated, well-stirred suspension of the solid powder. The magnitude of each perturbation was kept small to maintain near-equilibrium conditions. For the case of boehmite, multiple pH-jumps at different starting pHs from over- and under-saturated solutions gave the same observed, first order rate constant consistent with the simple or elementary reaction: .

This relaxation technique allowed us to apply a steady-state approximation to the change in aluminum concentration within the overall principle of detailed balancing and gave a resulting mean rate constant, (2.2 ± 0.3) × 10−5 kg m−2 s−1, corresponding to a 1σ uncertainty of 15%, in good agreement with those obtained from the traditional approach of considering the rate of reaction as a function of saturation index. Using the more traditional treatment, all dissolution and precipitation data for boehmite at 100.3 °C were found to follow closely the simple rate expression:

Rnet,boehmite=10-5.485{mOH-}{1-exp(ΔGr/RT)}, with Rnet in units of mol m−2 s−1. This is consistent with Transition State Theory for a reversible elementary reaction that is first order in OH concentration involving a single critical activated complex. The relationship applies over the experimental ΔGr range of 0.4–5.5 kJ mol−1 for precipitation and −0.1 to −1.9 kJ mol−1 for dissolution, and the pHm ≡ −log(mH+) range of 6–9.6. The gibbsite precipitation data at 50 °C could also be treated adequately with the same model:Rnet,gibbsite=10-5.86{mOH-}{1-exp(ΔGr/RT)}, over a more limited experimental range of ΔGr (0.7–3.7 kJ mol−1) and pHm (8.2–9.7).  相似文献   


11.
We present a database and a graphical analysis of published experimental results for dissolution rates of olivine, quartz plagioclase, clinopyroxene, orthopyroxene, spinel, and garnet in basaltic and andesitic melts covering a range of experimental temperatures (1100–1500°C) and pressures (105 Pa-3.0 GPa). The published datasets of Donaldson (1985, 1990) and Brearly and Scarfe (1986) are the most complete. Experimental dissolution rates from all datasets are recalculated and normalized to a constant oxygen basis to allow for direct comparison of dissolution rates between different minerals. Dissolution rates (ν) range from 5·10−10 oxygen equivalent moles (o.e.m.) cm−2 s−1 for olivine in a basaltic melt to 1.3·10−5 o.e.m. cm−2 s−1 for garnet in a basaltic melt. Values of ln ν are Arthenian for the experiments examined and activation energies range from 118 to 1800 kJ/o.e.m. for quartz and clinopyroxene, respectively.

The relationship between calculated A/RT for the dissolution reactions, where A is the thermodynamic potential affinity, and values of ν is linear for olivine, plagioclase, and quartz. We interpret this as strong evidence in support of using calculated A as a predictor of ν for, at least, superliquidus melt conditions.  相似文献   


12.
Janos L. Urai 《Tectonophysics》1985,120(3-4):285-317
Cylindrical samples of polycrystalline carnallite (KMgCl3, 6H2O) were deformed in a triaxial apparatus at 60°C, at confining pressures between 0.1 and 31 MPa and at strain rates between 10−4 and 10−8 s−1. In a number of cases, small amounts of saturated carnallite brine were added. Samples without added brine deform by intracrystalline slip, mechanical twinning, cracking, and by frictional sliding on crack surfaces. Stress-strain curves of these samples are strongly dependent on confining pressure. Addition of brine has a dramatic effect on both microstructural development and mechanical properties. Grain-boundary migration is strongly enhanced. At lower strain rates, additional intracrystalline effects start to appear, together with the onset of solution transfer. Rapid compaction in samples deformed with added brine causes high fluid pressures to develop. At higher strain rates addition of brine results in a decrease of the flow stress by a factor of two. This weakening will increase even further at strain rates below about 10−9 s−1, when solution transfer becomes rate controlling. It is argued that deformation of carnallite in nature is adequately described by the flow law found for samples deformed with added brine.  相似文献   

13.
Strain-controlled cyclic triaxial tests were performed on a one-size silica (Ottawa) sand artificially frozen into 71.1-mm-diameter cylindrical samples. Ice-saturated samples with three different sand contents were tested under the following conditions: axial strains ranging from 3 × 10−3 to 3 X 10−2%, confining pressures from zero to 1.378 MPa, frequencies of 0.05–5.0 cps and temperatures from −1 to −10 °C.

Test equipment included (1) an MTS electrohydraulic closed-loop testing system which applies the load to the sample, (2) a triaxial cell completely immersed in a low-temperature coolant for temperature control, (3) a refrigeration unit for control of the coolant temperature and constant coolant circulation and (4) measuring devices including an LVDT and load cell, together with recording devices such as a digital multimeter, an oscilloscope, a strip-chart recorder and a minicomputer.

Test results indicate that the dynamic Young's modulus increases with increasing frequency, confining pressure and sand content, but decreases with increasing strain and temperature. The damping ratio decreases with increasing frequency, sand content and lower temperatures. The influence of confining pressures and axial strain on the damping ratio are less explicit for the ranges considered. The experimental results are compared with data from other sources.  相似文献   


14.
Feasibility of storing LNG in a lined rock cavern was evaluated using a pilot cryogenic rock cavern constructed in Daejeon, Korea. The pilot program included hydrogeological and engineering characterization of the rock mass around the cavern, design and construction of a drainage system, and pilot operation of the cryogenic cavern. An appropriate drainage system is most important to protect the containment system of LNG from thermal shocks due to ice lenses and hydrostatic pressure of groundwater. As a part of the pilot program, this study focused on the evaluation of hydraulic and engineering properties of the rock mass around the cavern. For this purpose, engineering logging of the rock cores, single and cross-hole hydraulic tests, and recharge/drainage tests were performed using seven drilled holes with different trends and plunges. Three main joint sets were found from the logging of the rock cores, acoustic borehole televiewer, and window mapping. The orientations of the three major joint sets were 60/209, 40/171, and 29/331, which can provide the main groundwater flow paths. Mean RQD values ranged from 56 to 88, which were classified as fair and good, although varying with depth along single boreholes. Hydraulic conductivity from the single and cross-hole hydraulic tests estimated in the order of 10−6 or 107 m/s and corresponding transmissivity ranged between 105 and 106 m2/s. Permeable intervals identified from the hydraulic tests were mostly located above the cavern roof. Below the roof, the permeable zone was difficult to observe. According to the hydraulic communication tests performed for some designated intervals, hydraulic connection between boreholes was highly varied with depth or location, which indicated a very different distribution of water conducting joint sets along the boreholes. When water was injected at R1 with constant or varying flow rates, monotonous and stable seepage was observed at observation boreholes. From this, some stable drainage was expected even in relatively heavy rainfalls. When designing the drainage system of the cavern, the drainage holes should be orientated to maximize frequency of encountering the major joint sets and the permeable intervals identified from this study.  相似文献   

15.
We have determined cooling rates of orthopyroxene crystals from two Mg-suite lunar samples (gabbronorite 76255 and troctolite 76535) and one terrestrial sample (orthopyroxenite SC-936 from the Stillwater Complex), on the basis of their Fe–Mg ordering states. In addition, a cooling rate of 76255 was determined by modeling the formation of exsolution lamellae in pyroxenes. The M1–M2 site occupancies of the orthopyroxene crystals were determined by single crystal X-ray diffraction and the rate constant for the ordering reaction was used along with calibrations of the equilibrium intracrystalline fractionation of Fe and Mg as a function of temperature to calculate cooling rates. The closure temperatures (TC) of cation ordering are 525 °C for 76255, 500 °C for 76535 and 350 °C for SC-936 corresponding to cooling rates of 4 × 10−2 °C/year at the closure temperature for the lunar samples and 10−6 °C/year for the Stillwater sample. A cooling rate for 76255, determined by simulating the exsolution process, is 1.7 × 10−2 °C/year at a closure temperature for exsolution of 700 °C. The Fe–Mg ordering cooling rate determined for 76535 reflects a complex thermal history superimposed on the initial plutonic provenance established for this sample [McCallum, I.S., Schwartz, J.M., 2001. Lunar Mg suite: thermobarometry and petrogenesis of parental magmas. J. Geophys. Res. 106, 27969–27983]. The preservation of a crystallization age of 4.51 Ga and a metamorphic age of 4.25 Ga for 76535 is consistent with a model in which excavation of this sample from the lower lunar crust took place while the sample was at a temperature above the closure temperatures for the Sm–Nd, U–Pb and Ar–Ar isotopic systems. Temperatures in excess of the isotopic closure temperatures (i.e., >600 °C) in the lower lunar crust were maintained by heat diffusing from concentrations of U- and Th-rich KREEP material at the base of the crust. On the other hand, 76255 formed at a much shallower depth in the lunar crust (2 km) and was well below its isotopic closure temperatures at the time of excavation, most likely during the Serenitatis basin-forming impact event. Both lunar samples were reheated during transport to the surface and deposition in hot ejecta blankets. The reheating was short lived but apparently sufficient to redistribute Fe and Mg in M sites in orthopyroxenes. For the lunar samples, the cooling rates based on Fe–Mg ordering represent final stage cooling within an ejecta blanket.  相似文献   

16.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


17.
GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan   总被引:1,自引:0,他引:1  
Land subsidence caused by compression of clay layers in Ojiya City, Japan was measured by global positioning system (GPS) between 1 April 1996 and 31 December 1998.

Three baselines were selected in and around the city, and height difference on a WGS-84 ellipsoid was measured by GPS on each baseline. The ground at the GPS station in the city subsides and rebounds 7 cm every winter and spring, respectively. Measurement accuracy was 9.5 mm standard deviation. Ground water level was observed at a well near the GPS station. Regression analysis between total strain, calculated as ratio of the height difference displacement to the total thickness of the clay layers, and the layers' effective stress change with ground water level change gave good correlation. The slope of regression line 7.0×10−11 m2/N was obtained as an average apparent coefficient of volume compressibility of the layers.  相似文献   


18.
Several shales and oils ranging in age from 3 million to 2·7 billion years have been investigated for their hydrocarbon content using gas chromatography and mass spectrometry as primary analytical tools. From the Soudan Shale from Minnesota (2·7 × 109yr) the C18, C19, C20 and C21 isoprenoid-alkanes were obtained. The Antrim shale from Michigan (about 265 × 106 yr) yielded the C16, C18, C19, C20 and C21 isoprenoids, as well as a C16 iso-alkane and the C18 and C19 cyclohexyl n-alkanes. The San Joaquin Oil (30 × 106 yr) and the Abbott Rock Oil (3 × 106 yr) contained the C16, C18, C19, C20 and the C18, C19, C20 and C21 isoprenoids respectively. In addition, a series of iso-alkanes (C16−C18), anteiso-alkanes (C16−C18) and n-alkylcyclohexanes (C16−C19) as well as a C21 isoprenoid were obtained from the Nonesuch Seep Oil (1 × 109 yr). This analysis provides a comprehensive picture of the types of biogenic hydrocarbons found in oils and shales of widely differing ages, and in particular, the finding of isoprenoid alkanes in the Soudan Shale furnishes evidence for life processes at that period of geological time.  相似文献   

19.
In situ measurements of mineral surface evolution during the process of pressure solution are possible with the high brightness of synchrotron X-ray sources. This capability has been explored through the use of newly developed reaction vessels that allow transmission of the incident and scattered X-ray beam through a low atomic weight piston. Several new vessels are described, along with details of computational algorithms that are used to simulate X-ray scattering in this unconventional geometry. Results using calcite (CaCO3) and halite (NaCl) as reactant crystals are presented and compared to other atomic-scale measurements of surface dissolution processes. Calcite was reacted with an unsaturated fluid at 30 bars of pressure for approximately 24 h. During reaction the root mean square surface roughness (σ) evolved from 13.7 Å (± 0.5 Å) to 19.5 Å (± 1.0 Å), giving a roughening rate of: dσ/dt = +6.3 × 10− 5 Å s− 1. This is consistent with other measurements made with free calcite surfaces and is driven almost entirely by chemical disequilibrium. Analysis of the surface ex situ post-reaction gives an identical σ value, showing that the in situ measurements are well-constrained. Experiments also at 30 bars but in a saturated solution indicate that the calcite surface does not significantly roughen, giving the result that pressure solution of calcite at this pressure cannot be monitored in experiments of several days duration. Experiments with halite, a much more reactive phase, in saturated solutions showed the reflectivity profile to be dynamic on a time scale of hours. This experiment was left to reach equilibrium over 108 days and then re-analyzed, showing that σ had increased from 34 Å (± 2 Å) to 41 Å (± 2 Å), giving a roughening rate of: dσ/dt ≤ +6.4 × 10− 7 Å s− 1. This is two orders of magnitude smaller than the calcite roughening rate caused by chemical disequilibrium and provides the first direct in situ atomic-scale measurement of the rate of surface roughening due to pressure solution.  相似文献   

20.
A model of the earth's crust has been adopted for interpretation of seismic reflection profiles in Kazakhstan. Within it, the smooth variation of seismic velocities with depth becomes complicated by small random fluctuations of various scales. These velocity fluctuations are manifested in oscillations of amplitudes and arrival times of the recorded signals.

The inhomogeneity of the medium is characterized by its coefficient of intrinsic attenuation. Investigation of this coefficient shows that for the crust, its mean value (at a frequency of 7 Hz) is equal to 10−3 km −1 and that over the depth interval of 10–25 km its value is very small, almost zero. It is therefore most surprising that this same depth interval (10–25 km) contains nothing unusual within the cross-section of its determined component wave velocity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号