首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aquifer vulnerability of the Benin Formation aquifer (Calabar, southern Nigeria) has been assessed using a combination of DRASTIC index and GIS technology. The assessment was necessitated by the fact that uncontrolled disposal of domestic, industrial and agricultural wastes have caused groundwater contamination. Therefore, prevention of contamination, monitoring and management of the aquifer was urgently required to increase the efficient use of the current water supplies. The DRASTIC method uses seven parameters (depth to groundwater table, net recharge, aquifer media, soil media, topography, influence of vadose zone and hydraulic conductivity), which were used to produce vulnerability maps. The drastic vulnerability index ranged between 124 and 170. The vulnerability map shows that the aquifer is highly vulnerable in southeastern parts of the area covering about 22 %. The medium vulnerability area covers about 56.8 % of Calabar extending from the southwest to northern parts. 21.2 % of the area covering the central and northern parts the area lies within the low vulnerability zone. The present industrial and activities are located in the eastern and western parts, which falls within the low-medium vulnerability areas. Documented nitrate concentration in hand-dug wells and boreholes are in agreement with vulnerability zones. Sensitivity analysis was performed to evaluate the sensitivity of each parameter between map layers such that subjectivity can be reduced to an extent and new weights computed for each DRASTIC parameter. As management options sensitive areas, especially in the southern parts of Calabar area, should be protected from future development.  相似文献   

2.
A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.  相似文献   

3.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

4.
The present work attempts to interpret the groundwater vulnerability of the Melaka State in peninsular Malaysia. The state of groundwater pollution in Melaka is a critical issue particularly in respect of the increasing population, and tourism industry as well as the agricultural, industrial and commercial development. Focusing on this issue, the study illustrates the groundwater vulnerability map for the Melaka State using the DRASTIC model together with remote sensing and geographic information system (GIS). The data which correspond to the seven parameters of the model were collected and converted into thematic maps by GIS. Seven thematic maps defining the depth to water level, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity were generated to develop the DRASTIC map. In addition, this map was integrated with a land use map for generating the risk map to assess the effect of land use activities on the groundwater vulnerability. Three types of vulnerability zones were assigned for both DRASTIC map and risk map, namely, high, moderate and low. The DRASTIC map illustrates that an area of 11.02 % is low vulnerability, 61.53 % moderate vulnerability and 23.45 % high vulnerability, whereas the risk map indicates that 14.40 % of the area is low vulnerability, 47.34 % moderate vulnerability and 38.26 % high vulnerability in the study area. The most vulnerability area exists around Melaka, Jasin and Alor Gajah cities of the Melaka State.  相似文献   

5.
Groundwater, the most vital water resource being used for irrigation, domestic and industrial purposes is nowadays under severe threat of contamination. Groundwater contamination risk assessment is an effective tool for groundwater management. In the study, a DRASTIC model which is based on the seven hydrogeological parameters viz: depth of water, net-recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity was used to evaluate the groundwater pollution potentiality of upper Betwa watershed. ArcGIS was used to create the ground water vulnerability map by overlaying the seven layers. Based on groundwater vulnerability map, the watershed has been divided in three vulnerable zones viz; low vulnerability zone with 42.83 km2 of area, moderate with 369.21 km2 area and high having 270.96 km2 of area. Furthermore, the DRASTIC model has been validated by nitrate concentration over the area. Results of validation have shown that in low vulnerable zone, no nitrate contamination has been recorded. While in the moderate zone nitrate has been found in the range of 1.6-10ppm. However, in high vulnerable zone 11-40ppm of nitrate concentration in groundwater has been recorded, which proves that the DRASTIC model is applicable for the prediction of groundwater vulnerability in the watershed and in similar areas too.  相似文献   

6.
The present research aims to derive the intrinsic vulnerability of groundwater against contamination using the GIS platform. The study applies DRASTIC model for Ahmedabad district in Gujarat, India. The model uses parameters like depth, recharge, aquifer, soil, topography, vadose zone and hydraulic conductivity, which depict the hydrogeology of the area. The research demonstrates that northern part of district with 46.4% of area is under low vulnerability, the central and southern parts with 48.4% of the area are under moderate vulnerability, while 5.2% of area in the south-east of district is under high vulnerability. It is observed from the study that lower vulnerability in northern part may be mostly due to the greater depth of vadose zone, deeper water tables and alluvial aquifer system with minor clay lenses. The moderate and high vulnerability in central and southern parts of study area may be due to lesser depth to water tables, smaller vadose zone depths, unconfined to semi-confined alluvial aquifer system and greater amount of recharge due to irrigation practices. Further, the map removal and single-parameter sensitivity analysis indicate that groundwater vulnerability index has higher influence of vadose zone, recharge, depth and aquifer parameters for the given study area. The research also contributes to validating the existence of higher concentrations of contaminants/indicators like electrical conductivity, chloride, total dissolved solids, sulphate, nitrate, calcium, sodium and magnesium with respect to groundwater vulnerability status in the study area. The contaminants/indicators exceeding the prescribed limits for drinking water as per Indian Standard 10500 (1991) were mostly found in areas under moderate and high vulnerability. Finally, the research successfully delineates the groundwater vulnerability in the region which can aid land-use policies and norms for activities related to recharge and seepage with respect to existing status of groundwater vulnerability and its quality.  相似文献   

7.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

8.
Groundwater is a very important natural resource in Khanyounis Governorate (the study area) for water supply and development. Historically, the exploitation of aquifers in Khanyounis Governorate has been undertaken without proper concern for environmental impact. In view of the importance of quality groundwater, it might be expected that aquifer protection to prevent groundwater quality deterioration would have received due attention. In the long term, however, protection of groundwater resources is of direct practical importance because, once pollution of groundwater has been allowed to occur, the scale and persistence of such pollution makes restoration technically difficult and costly. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out, whether certain locations in this groundwater basin are susceptible to receive and transmit contamination. This study aims to: (1) assess the vulnerability of the aquifer to contamination in Khanyounis governorate, (2) find out the groundwater vulnerable zones to contamination in the aquifer of the study area, and (3) provide a spatial analysis of the parameters and conditions under which groundwater may become contaminate. To achieve that, DRASTIC model within geographic information system (GIS) environment was applied. The model uses seven environmental parameters: depth of water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate aquifer vulnerability. Based on this model and by using ArcGIS 9.3 software, an attempt was made to create vulnerability maps for the study area. According to the DRASTIC model index, the study has shown that in the western part of the study area the vulnerability to contamination ranges between high and very high due to the relatively shallow water table with moderate to high recharge potential, and permeable soils. To the east of the previous part and in the south-eastern part, vulnerability to contamination is moderate. In the central and the eastern part, vulnerability to contamination is low due to depth of water table. Vulnerability analysis of the DRASTIC Model indicates that the highest risk of contamination of groundwater in the study area originates from the soil media. The impact of vadose zone, depth to water level, and hydraulic conductivity imply moderate risks of contamination, while net recharge, aquifer media, and topography impose a low risk of aquifer contamination. The coefficient of variation indicates that a high contribution to the variation of vulnerability index is made by the topography. Moderate contribution is made by the depth to water level, and net recharge, while impact of vadose zone, hydraulic conductivity, soil media, and Aquifer media are the least variable parameters. The low variability of the parameters implies a smaller contribution to the variation of the vulnerability index across the study area. Moreover, the “effective” weights of the DRASTIC parameters obtained in this study exhibited some deviation from that of the “theoretical” weights. Soil media and the impact of vadose zone were the most effective parameters in the vulnerability assessment because their mean “effective” weights were higher than their respective “theoretical” weights. The depth of water table showed that both “effective” and “theoretical” weights were equal. The rest of the parameters exhibit lower “effective” weights compared with the “theoretical” weights. This explains the importance of soil media and vadose layers in the DRASTIC model. Therefore, it is important to get the accurate and detailed information of these two specific parameters. The GIS technique has provided an efficient environment for analysis and high capabilities of handling large spatial data. Considering these results, DRASTIC model highlights as a useful tool that can be used by national authorities and decision makers especially in the agricultural areas applying chemicals and pesticides which are most likely to contaminate groundwater resources.  相似文献   

9.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

10.
松花江佳木斯段潜水脆弱性评价   总被引:3,自引:0,他引:3  
鉴于松花江流域地下水的重要性和当前污染,运用改进的DRASTIC模型,对松花江佳木斯段5~10 km范围内潜水进行了脆弱性评价。选取净补给量、包气带介质、含水层厚度、地下水水位埋深、土地利用类型、污染源影响和地下水开采模数建成评价指标体系;采用层次分析法确定各指标权重,结合GIS技术实现了脆弱性分区,并将结果与地下水质评价结果进行对比;最后通过敏感度分析讨论了所选指标的合理性。结果表明:地下水脆弱性相对较低和低脆弱区共占研究区面积的82.76%;较高和高的区域仅占8.13%,主要分布在七水厂、江北水源地以及污染强度较大的点源污染周围。地下水埋深、包气带岩性和地下水开采模数是对潜水脆弱性影响最大的因素。评价结果比较真实地反映了松花江佳木斯段潜水脆弱性状况,对城市规划建设和地下水资源的可持续利用具有指导意义。  相似文献   

11.
DRASTIC indexing and integrated electrical conductivity (IEC) modeling are approaches for assessing aquifer vulnerability to surface pollution. DRASTIC indexing is more common, but IEC modeling is faster and more cost-effective because it requires less data and fewer processing steps. This study aimed to compare DRASTIC indexing with IEC modeling to determine whether the latter is sufficient on its own. Both approaches are utilized to determine zones vulnerable to groundwater pollution in the Nile Delta. Hence, assessing the nature and degree of risk are important for realizing effective measures toward damage minimization. For DRASTIC indexing, hydrogeological factors such as depth to aquifer, recharge rate, aquifer media, soil permeability, topography, impact of the vadose zone, and hydraulic conductivity were combined in a geographical information system environment for assessing the aquifer vulnerability. For IEC modeling, DC resistivity data were collected from 36 surface sounding points to cover the entire area and used to estimate the IEC index. Additionally, the vulnerable zones identified by both approaches were tested using a local-scale resistivity survey in the form of 1D and 2D resistivity imaging to determine the permeable pathways in the vadose zone. A correlation of 0.82 was obtained between the DRASTIC indexing and IEC modeling results. For additional benefit, the obtained DRASTIC and IEC models were used together to develop a vulnerability map. This map showed a very high vulnerability zone, a high-vulnerability zone, and moderate- and low-vulnerability zones constituting 19.89, 41, 27, and 12%, respectively, of the study area. Identifying where groundwater is more vulnerable to pollution enables more effective protection and management of groundwater resources in vulnerable areas.  相似文献   

12.
A point count index method using a well drillers log and field measurements has been developed following the DRASTIC and SINTACS procedures to map and evaluate the vulnerability of a coastal plain aquifer to surface and near surface contamination. The input parameters with the acronym CALOD include clay layer thickness (C), aquifer media character (A), lateritic layer thickness (L), overlying layer character (O) and the depth to groundwater level (D). The CALOD vulnerability potential index (CALOD index) is computed as the sum of the products of weights and ratings assigned to each of the input parameters. The CALOD index, varying between 15 and 75, is divided into four classes: high (>60), high-medium, (40–60), low-medium (20–40) and low (<20). The CALOD index is then used to produce a vulnerability potential map for the area. From the map, areas of high, high-medium and medium-low are consistent with the upper gravelly aquiferous zone while areas of medium-low and low are restricted to the deeper lower sandy aquiferous layer. The most important parameters affecting groundwater vulnerability to pollution in coastal areas include saturated thickness of the aquifer, depth to groundwater level, lateritic layer thickness and the aquifer media character. The concentration of some chemical pollution indicators (electrical conductivity, K, NO3, Cl and metal load) are relatively higher for the highly vulnerable shallower upper gravelly unit in comparison to the less vulnerable deeper sandy unit. This method is very suitable for coastal plain sand aquifers especially, where data is scare.  相似文献   

13.
Groundwater vulnerability is a cornerstone in evaluating the risk of groundwater contamination and developing management options to preserve the quality of groundwater. Based on the professional model (DRASTIC model) and geographical information system (GIS) techniques, this paper carries out the shallow groundwater vulnerability assessment in the Zhangye Basin. The DRASTIC model uses seven environmental parameters (depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) to characterize the hydrogeological setting and evaluate aquifer vulnerability. According to the results of the shallow groundwater vulnerability assessment, the Zhangye Basin can be divided into three zones: low groundwater vulnerability risk zone (risk index <120); middle groundwater vulnerability risk zone (risk indexes 120–140) and high risk zone (risk index >140). Under the natural conditions, the middle and high groundwater vulnerability risk zones of the Zhangye Basin are mainly located in the groundwater recharge zones and the important cities. The high, middle and low groundwater vulnerability risk zones of the Zhangye Basin cover around 17, 21 and 62% of study area, respectively.  相似文献   

14.
A study was carried in Mettur taluk, Salem district of Tamilnadu, India to develop a DRASTIC vulnerability index in GIS environment owing to groundwater pollution with increasing population, industries, and agricultural activities. Seven DRASTIC layers were created from available data (depth to water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity) and incorporated into DRASTIC model to create a groundwater vulnerability map by overlaying the hydrogeological parameters. The output map indicates southwestern part of the study area with high pollution potential, northern and northwestern parts as moderate pollution potential and northeastern parts as low and no risk of pollution potential. For validating the vulnerability assessment, a total of 46 groundwater samples were collected from different vulnerability zones of the study area for two different seasons (pre- and post-monsoon) and analyzed for major anions and cations. Higher ionic concentrations were noted in wells located near highly industrialized, urbanized, and agricultural active zones. The water types represent Na–Mg–HCO3 and Na–Cl–HCO3 type indicating dominance of anthropogenic-related activities. Nitrate and chloride were demarcated as pollution indicators and correlated with DRASTIC vulnerability map. The results show that southwestern, northwestern, and northern parts of the study area recorded with high and moderate vulnerable zones, record higher nitrate values. In contrast to DRASTIC method predicted, low vulnerable zones show higher chloride concentration may be due to agricultural and urban development.  相似文献   

15.
在哈尔滨城市地质调查项目实测的地质、水文地质资料的基础上,利用DRASTIC方法,选择地下水埋深、净补给量、含水层介质、包气带影响等7个参数作为评价指标,建立哈尔滨地区地下水易污性评价体系,编制哈尔滨地区地下水易污性分区图。研究表明,哈尔滨地区地下水易污性较高的区域占17.1%,主要分布在松花江两岸,为地下水污染的高风险地区,应列为地下水资源管理重点防护区域。  相似文献   

16.
Three different parametric methods for the evaluation of intrinsic vulnerability to pollution have been applied in a hydrothermal carbonate aquifer located in central-northern Italy and the results obtained were compared with each other. The study area, large, approximately 152 km2, lies in an area of the northern Apennines. The investigated aquifer feeds the hot thermal springs of Saturnia. The vulnerability assessment methods used are: SINTACS, GODS and COP. The vulnerability maps obtained were first individually examined, and then they were compared with each other by means of spatial analysis. These maps show similar results for the estimation of the vulnerability just in some areas. SINTACS yields areas potentially vulnerable to pollution along the Albegna River and its major tributaries in the northern part of the study area. The GODS index map reflects the great importance that this method gives to the lithological characteristics of the unsaturated zone in the subdivision of areas with different vulnerability. GODS and COP methods agree in classifying low vulnerability in the most part of central-southern study area, where the aquifer is confined by the Pliocene clay deposits. Based on the conceptual model of groundwater flow developed for the aquifer under investigation, COP seems the most appropriate method among those applied in this work, in particular with regard to the assessment of the vulnerability of the recharge area of thermal groundwater. Located in the northern part of the study area, where karst carbonate formations of the Tuscan Nappe outcrop, this recharge area is classified by the COP method as highly vulnerable to pollution.  相似文献   

17.
Aquifer vulnerability has been assessed in the Senirkent-Uluborlu Basin within the Egirdir Lake catchment (Turkey) using the DRASTIC method, based on a geographic information system (GIS). There is widespread agriculture in the basin, and fertilizer (nitrate) and pesticide applications have caused groundwater contamination as a result of leaching. According to hydrogeological data from the study area, surface water and groundwater flow are towards Egirdir Lake. Hence, aquifer vulnerability in the basin should be determined by water quality in Egirdir Lake. DRASTIC layers were prepared using data such as rainfall, groundwater level, aquifer type, and hydraulic conductivity. These data were obtained from hydrogeological investigations and literature. A regional-scale aquifer-vulnerability map of the basin was prepared using overlay analysis with the aid of GIS. A DRASTIC vulnerability map, verified by nitrate in groundwater data, shows that the defined areas are compatible with land-use data. It is concluded that 20.8% of the basin area is highly vulnerable and urgent pollution-preventions measures should be taken for every kind of relevant activity within the whole basin.  相似文献   

18.
El Alamein-El-Dabaa area lies in the western Mediterranean coastal zone of Egypt with about 50 km long. The aims of the present study are the shallow groundwater aquifer determination and calculate the electric parameters of the overburden to achieve the easiest way for detecting groundwater contamination and considered it during the planning of new development project(s). To attain this target, 44 vertical resistivity soundings using Schlumberger array of the maximum AB/2?=?1000 m in the form of four profiles were carried out. From the interpretation results, six geoelectrical layers have been established in the area, and iso-resistivity, depth to water, and isopach contour maps are presented. Four geoelectrical cross-sections (two geoelectrical cross-sections are parallel to the Mediterranean shoreline and the other two are normal to the Mediterranean shoreline) have been constructed. According to this work, the upper part of the Oolitic Limestone represents the shallow groundwater aquifer in this area and can be distinguished into two zones. The upper zone is brackish, whereas the lower one is saline. The geoelectrical succession reveals that the aquifer is free type. The depth to water ranges between 20 and 63 m; therefore, it is the choice as the best sites for groundwater exploitation. In the area under study, the depth to water and the thickness of the brackish increase towards the south side as well as the depth to the brackish water. The Dar-Zarrouk parameters clarified that there are some parts that may contaminate pathways and other parts are not.  相似文献   

19.
陕北能源化工基地潜水易污性评价   总被引:4,自引:0,他引:4  
随着陕北能源化工基地的建设和发展,地下水污染问题日益突出。为了预防基地地下水的污染,保护水资源,依据陕北能源化工基地地下水勘查、地下水污染调查、野外包气带原位污水垂直入渗、水平运移试验等基础资料,选取潜水位埋深(D)、降雨入渗补给量(R)、含水层岩性(A)、土壤类型(S)、地形坡度(T)、包气带介质(I)和含水层渗透系数(C)7个指标,运用DRASTIC指标叠加法,建立了陕北能源化工基地潜水易污性评价指标体系,对陕北能源化工基地潜水进行了易污性评。依据评价结果,将研究区潜水区划分为易污性高、中、低3个区,并针对3个区提出了相应的防污建议。  相似文献   

20.
华北平原地下水脆弱性评价   总被引:4,自引:0,他引:4       下载免费PDF全文
针对华北平原地域广阔,地貌和水文地质条件复杂、地下水开发利用程度高,地下水位埋深、包气带和含水层岩性差异性大等特点,基于大量钻孔和地下水位监测资料,厘定了包气带岩性和地下水位埋深变化对脆弱性评价影响,进而建立适宜华北平原的DRITC评价指标体系,并应用于华北平原地下水脆弱性评价。评价中,根据华北平原水文地质条件,划分4评价分区,剖分2 km×2 km单元34 253个,采用地下水位埋深、净补给量、包气带岩性、含水层累积厚度和渗透系数5个因子作为评价指标,求得地下水脆弱性综合指数及脆弱性分布图。结果表明,华北平原山前冲洪积扇和古黄河冲洪积平原的现代黄河影响带地下水脆弱性高或较高。野外采样7 472组地下水有机污染测试分析结果佐证,脆弱性高或较高区有机污染检出项数多,其他地区较少,由此验证评价结果的客观性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号