首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
发育完整的灰岩风化壳及其矿物学和地球化学特征   总被引:25,自引:5,他引:20  
对于碳酸盐岩土覆土壤成因、尽管碳酸盐岩风化残积成土说被多数学者认同,但由于碳酸盐岩中酸不溶物含量极低,在风化成土过程中会伴随着巨大的体积缩小变化,原岩结构和半风化带无法保留,从而缺失了探索上覆土壤物质来源的重要中间环节,使得这种观点缺乏野外宏观证据的支持。最近,我们在贵州、湖南等地发现了数个以泥质灰岩和泥质白云岩为基岩的碳酸盐岩风化壳剖面,尚保留有较好的原岩结构,具有明显的风化壳分带和过渡现象。这些风化壳剖面的发现为深入研究碳酸盐岩风化成土过程提供了良好的研究场所。本文选取了较为典型的吉首泥灰岩风化壳剖面,从矿物学地球化学的角度来探讨碳酸盐岩风化壳的形成过程和发育特征,结果表明该风化壳既遵循非碳酸盐岩(主要是结晶岩类)风化壳的发育特征,也具有自己独特的地球化学演化规律。风化壳总体特点受碳酸盐中的酸不溶物矿物组合及化学成分的影响甚至控制,风化非碳酸盐风壳相似的发育特征。吉首泥灰岩风化壳剖面的发育特征和作者早先提出 的碳酸盐岩风化成土的两阶段模式是一致的,即以碳酸盐矿物大量淋失、酸不溶物逐渐堆积或残积为特征的早期阶段和残积物进一步风化成土的阶段,后一阶段的演化类似非碳酸盐岩类的风化过程。  相似文献   

2.
Development of Taprang landslide,West Nepal   总被引:1,自引:1,他引:0  
This paper is about a large landslide located at Taprang, on the right bank of the Madi River in the west Nepal Himalaya. It attempts to reconstruct the evolution of the landslide from its initial state to the present conditions. Many large landslides involve multiple failure incidents in different times to attain their present size and shape. The Taprang landslide has also been active for more than 75 years and experienced many failure episodes. The slide lies in a very complex geological setting characterized by the presence of Main Central Thrust and some other folds as well as several joint sets and shear zones. It is developed on weathered graphitic schists, highly fractured and jointed quartzites, marbles, gneisses, and a few amphibolites. Landslide mapping revealed that the rocks are deformed and fractured. They have also undergone intense weathering. Laboratory analysis of rock and soil samples collected from the landslide and surrounding area shows that the weathered rocks, joint infillings, and shear zones are rich in clay minerals, especially smectite and montmorillonite having swelling properties. Besides, hydrologic, climatic, and anthropogenic factors operating simultaneously since a long time have also contributed significantly to the enlargement of the slide. The study indicates that the landslide has a high potential of future enlargement towards upper slopes.  相似文献   

3.
The present study was conducted along the Mugling–Narayanghat road section and its surrounding region that is most affected by landslide and related mass-movement phenomena. The main rock types in the study area are limestone, dolomite, slate, phyllite, quartzite and amphibolites of Lesser Himalaya, sandstone, mudstone and conglomerates of Siwaliks and Holocene Deposits. Due to the important role of geology and rock weathering in the instabilities, an attempt has been made to understand the relationship between these phenomena. Consequently, landslides of the road section and its surrounding region have been assessed using remote sensing, Geographical information systems and multiple field visits. A landslide inventory map was prepared and comprising 275 landslides. Nine landslides representing the whole area were selected for detailed studies. Field surveys, integrated with laboratory tests, were used as the main criteria for determining the weathering zones in the landslide area. From the overall study, it is seen that large and complex landslides are related to deep rock weathering followed by the intervention of geological structures as faults, joints and fractures. Rotational types of landslides are observed in highly weathered rocks, where the dip direction of the foliation plane together with the rock weathering plays a principle role. Shallow landslides are developed in the slope covered by residual soil or colluviums. The rock is rather fresh below these covers. Some shallow landslides (rock topples) are related to the attitude of the foliation plane and are generally observed in fresh rocks. Debris slides and debris flows occur in colluviums or residual soil-covered slopes. In few instances, they are also related to the rock fall occurring at higher slopes. The materials from the rock fall are mixed with the colluviums and other materials lying on the slope downhill and flow as debris flow. Rock falls are mainly related to the joint pattern and the slope angle. They are found in less-weathered rocks. From all these, it is concluded that the rock weathering followed by geological structures has prominent role in the rock slope instability along Mugling–Narayanghat road section and its surrounding regions.  相似文献   

4.
基于物化探技术方法在特殊地质地貌区填图中的应用实验,介绍从区域物化探数据提取地质填图信息的方法,指出重磁与氡-汞气测联合应用是覆盖区探测隐伏岩体、断裂的高效低成本物化探技术组合。运用基于地球化学理论方法的元素地球化学判别技术,在强烈风化区定量划分风化等级为:基岩-弱风化-中度风化-强风化-全风化-残积土等;指出风化壳元素地球化学行为对原生矿物分解、次生矿物形成具有示踪效应;不同风化层稀土元素富集分异显著,强烈富集于全风化层(岩土界面或风化岩石顶界)中的稀土元素分布模式,可作为界定风化壳分层的重要地球化学判别指标。   相似文献   

5.
青藏高原东部金沙江流域盆地陆地风化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
青藏高原东部金沙江流域是研究高原隆升与陆地风化的理想地区。本文通过对金沙江河流系统的取样,从河流溶质载荷主要离子和悬浮载荷粘土矿物等方面揭示青藏高原东部金沙江流域盆地陆地风化特征。研究表明,金沙江流域盆地陆地岩石风化主要是碳酸盐岩、蒸发盐岩和硅酸盐岩。利用S i、S i/TZ+*、S i/Na*+K和S i/K以及(Na*+K)/TZ+等5个指标结合流域区域岩石分布和土壤特征揭示出流域硅酸盐岩为浅表性初级风化,风化产物主要是富含阳离子的次生粘土矿物。  相似文献   

6.
李自静  刘琰 《地球科学》2018,43(4):1307-1320
川西冕宁-德昌REE矿带中的风化型矿石研究相对缺乏.根据近几年的野外地质调查,采用电子探针、X光粉晶衍射、全岩分析等对大陆槽、牦牛坪和木落寨矿床中疑似风化矿的样品进行类型和成因分析.结果表明:大陆槽风化型矿石中大量粘土矿物(达40%)和矿石矿物(达60%)发育,风化程度高;相反,牦牛坪和木落寨疑似风化型矿石中几乎没有粘土矿物,风化程度低.通过对牦牛坪和木落寨疑似风化型矿石进行地球化学特征、矿物组成分析并与围岩、矿脉的组成和产状对比,表明疑似风化型矿石主要是由矿脉和围岩在强烈的构造作用下发生机械风化形成.频繁的角砾构造使大陆槽矿石发生强烈的机械风化作用,并加速了矿石发生一定的水岩反应,促进矿石发生中等强度的化学风化作用.目前整个矿带中未发现明显的生物风化作用.整个稀土矿带的风化型矿石比南岭离子吸附型稀土矿石的风化程度低,形成时间较晚(11 Ma),氟碳铈矿大量保存,还没有形成离子吸附型矿床.   相似文献   

7.
二长花岗岩风化壳自下而上划分为原生带、微风化带、弱风化带和强风化带。风化壳中粘土矿物主要为埃洛石,其次为高岭石及少量伊利石。微风化带下部以高岭石为主,往上埃洛石逐渐占优势,并于弱风化带中、上部和强风化带中局部富集,这与当时地下水活动状态有关。高岭石结晶程度随风化程度的增强而提高。在弱酸性介质条件下及水分丰富、溶出条件强烈时,从长石解理面上和长石的“溶蚀”空隙中可以直接形成高岭石或埃洛石,而过渡阶段的伊利石很不发育或不存在。  相似文献   

8.
赵芝  王登红  潘华  屈文俊 《地球科学》2017,42(10):1697-1706
为了解风化壳中离子交换相稀土元素的特征,对广西某地花岗岩风化壳剖面样品进行了X射线衍射及主量、稀土元素地球化学特征的研究.剖面自上而下可划分为腐殖土层(A1)、亚粘土层(A2)、网纹状风化层(B1)和全风化层(B2);自A1至B2,粘土矿物的含量和化学风化蚀变指数快速降低;与母岩相比A1、A2、B1中全相Ce、Nd和HREE相对富集,B2中全相稀土与母岩特征相似,所有样品的离子交换相HREE亏损,Y相对富集;离子交换相轻、重稀土一起富集在B2中.据此推测,花岗岩中褐帘石、榍石等易风化的稀土矿物为离子交换相稀土提供了主要的物源,锆石、磷钇矿等难风化的稀土矿物的残留及表生稀土矿物的形成使全相HREE相对富集;离子交换相轻、重稀土元素的分馏程度随风化程度的增加而变化.   相似文献   

9.
本文利用1∶50000遵义市、遵义县两幅区域地质调查成果等资料,对该区地层岩石及其风化土壤中环境微量元素地球化学背景、各时代地层岩石及其风化土壤环境微量元素分布特征及地球化学异常作了分析总结.进而作出了该区岩石及土壤的环境微量元素质量评述.重点认为,微量元素在土壤中的含量分区与成土母岩地层的平面分布关系十分密切,地层及岩性因素是土壤中元素分布的主导因素,从而形成了自然的土壤地球化学分区;区内存在三类土壤元素地球化学异常:一是由某些地层岩石风化而成(主要类型),二是由地质构造及热液蚀变导致(次要类型), 三是由矿产开发等人类活动造成(应高度关注的类型);应当辩证看待微量必需元素的高背景地层及地球化学异常层,通过合理利用它们来为人类服务.  相似文献   

10.
Weathering and landslide occurrences in parts of Western Ghats,Kerala   总被引:2,自引:0,他引:2  
The climatic condition of Western Ghats has influenced the process of weathering and landslides in this mountainous tract along the southwest coast of India. During the monsoon period, landslides are a common in the Western Ghats, and its intensity depends upon the thickness of the loose unconsolidated soil formed by the process of weathering. Debris landslides with a combination of saprock, saprolite and soil, indicate the role of weathering in landslide occurrences. This paper reports on how the weathering in the windward slope of Western Ghats influences the occurrence of landslides and the factors which accelerate the weathering process. Rock and soil samples were collected from the weathering profile of hornblende gniess and granite gneiss. The chemical analysis and the calculated Chemical Index of Alteration (CIA) indicate the significant weathering and its possible influence on landslide occurrences in the study area. Mainly, the CIA value of lateritic soil and forest loam indicated the extent of high chemical weathering in this region. Rainfall is the dominant parameter influencing the chemical weathering process. In addition, deforestation, land use practices and soil erosion are some of the other important factors accelerating the weathering process and landslide occurrences in the region. The locations of the previous landslides superimposed on geology and soil show that most of the landslide occurrences are associated with the highly weathered zone, particularly lateritic soil and the ‘severe’ (rock outcrop) erodability zone.  相似文献   

11.
This work focuses on developing multidisciplinary research on weathering profiles of granitoid rocks related to the tectonic and landscape evolution of the Capo Vaticano area, Calabria, southern Italy. During the Pleistocene, the Mediterranean climate plays, on the already decomposed plutonic rocks, important processes of alteration, on both the highest and inland areas and the coastal areas of the Calabrian region, such as the studied area. Field observations coupled to chemical, minero‐petrographical features and geochemical modelling are used to characterize the weathering processes affecting the granitoid complex. The granitoid cut slopes show a generally simple weathering profile characterized by a progressive increase in weathering towards the top of the slopes. The completely weathered rocks (class V) and residual soil (class VI) contain a high percentage of altered minerals, microfractures, and voids. The main mineralogical changes are the partial transformation of biotite and the partial destruction of feldspars (mainly plagioclase) that are associated with the neoformation of secondary clay minerals and ferruginous products during the most advanced stage of weathering. These transformations produce a substitution of the original rock fabric. Geochemical modelling showing the precipitation of kaolinite, illite, vermiculite, ferrihydrite and calcite. These secondary solid phases are similar to those found in this natural system. Thus, the final results of the weathering process is a soil‐like material mainly characterized by mostly a sand to gravel grain‐size fractions related to microfabric changes and mineralogical and chemical variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Chemical relationships among surface waters, soils and rocks were investigated in the drainage basin of the North Fork of the Shoshone River in northwestern Wyoming. The area is underlain entirely by andesitic volcanic rocks. Smectite is the only clay mineral forming in soils over much of the area, although minor kaolinite occurs in a few areas of higher-than-average rainfall.Mass-balance calculations relating stream water chemistry to rock alteration indicate that controls on the chemistry of surface waters take place not in the soil zone but in the altered rock zone. The dominant weathering process which controls the water chemistry is slight alteration of large volumes of rock, rather than development of chemical equilibria involving secondary phases in the soil zone. The altered rock is enriched in feldspars and depleted in ferromagnesian minerals compared to fresh rock. The high rate of physical erosion of the area is enough to remove the residue, reexpose the bedrock, and continue the weathering process.  相似文献   

13.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   

14.
Black Hill is a boulder‐strewn residual of norite standing 45 m above the Murray Plains about 80 km northeast of Adelaide. Between the boulders, the crystalline rock has weathered to a dark‐brown terra rossa‐rendzina soil with calcite, illite, kaolin, and hematite as the principal secondary minerals. At one site on the smooth lower slopes of the outcrop, the material above the norite consists of partially weathered granular fragments with considerable dolomite and some calcite in nodular form. Below the surface, the rock has been weathered along joints to produce the clay mineral nontronite, and between each corestone and this plastic clay there is a zone of laminated but essentially unaltered rock 10–25 cm thick. Pieces of amorphous silica occur sporadically in some joints and on the surface.

The dark‐brown soil appears to be related to the present environment but the nontronite in the joint weathering, the dolomite, and the amorphous silica are all consistent with the norite having been inundated, possibly during the Miocene marine transgression.

Calculations based on the retention of elements such as aluminium, potassium, titanium, and iron have been used to predict quantitatively the amount of certain minerals such as quartz, calcite, and dolomite introduced to the weathering profiles.  相似文献   

15.
不活动元素的稳定性使得风化岩石、土壤和水系沉积物等风化产物能够保留新鲜母岩的元素特征,它们之间的含量变化趋势有可能从母岩传递到其风化产物中,这类似于生物学中基因遗传。仿照生物学中基因的特性提出了地球化学基因的概念及其构建方法,为了比较地球化学基因的相似程度进而提出基因相似度的概念及其计算方法。以风化过程中11种不活动元素为例,基于中国酸性岩、中性岩、基性岩的元素丰度数据构建了表征岩石及其风化产物地球化学特性的岩性地球化学基因,其元素序列为:Al2O3→SiO2→P→Ti→La→Fe2O3→Th→Zr→Nb→Y→U。利用豫西熊耳山地区安山岩风化剖面、残坡积—沟系土剖面、化探详查水系沉积物和区域化探水系沉积物4种比例尺尺度的样品对构建的岩性地球化学基因进行了检验,结果发现岩性地球化学基因在风化过程中具有很好的遗传性(从岩石到风化产物)和继承性(从土壤到其源岩),利用岩性地球化学基因可以对土壤样品进行物源示踪。源自同一母岩的水系沉积物和土壤之间在岩性地球化学基因方面具有很好的相似性(同源风化产物之间)。基于中国区域化探水系沉积物调查数据,可以构建岩性地球化学基因库来对岩石及其风化产物样品进行溯源分析,在地质、环境、法庭等科学领域具有潜在应用前景。  相似文献   

16.
Concentration of Fe-oxides and alumina in weathering processes are main geological reactions for lateritization and bauxitization, respectively. In western Japan, red-coloured soil formed by weathering processes developed in many places. This soil is composed of hydrous Fe-oxide minerals, hydrous alumina minerals and other minerals. It was formed in the upper part of deep weathering crust by weathering processes under some kind of sub-tropical climate, probably in the Pliocene. One of these occurrences is observed in the upper part of Goshikidai and Konodai, west part of Takamatsu city, northeast Shikoku Island, west Japan. A deep weathering crust is distributed on wide hilly plains ranging from 250 to 400 m a.m.s.l. in the northwestern region of Takamatsu city. Original rock of the weathering crust is bronzite andesite and glassy bronzite andesite, so-called ‘sanukite’. The andesites had been weathered under some special climate, and the geological age of the weathering is the same as above. The mineral assemblage and formation mechanism are similar to those of laterite and bauxite. The weathering crust developing in this region are subdivided into the three following zones: (1) A zone, composed of hydrous Fe-oxides and metahalloysite with small amounts of gibbsite and it is associated with white veins of metahalloysite; (2) B zone, composed of hydrous Fe-oxides and metahalloysite (some material is associated with -cristobalite); and C zone, composed of metahalloysite or halloysite and -cristobalite with relict crystals of feldspar and quartz, and some material is associated with montmorillonite. Chemical analyses of the materials of the three zones show the formation mechanisms of the weathering crust.  相似文献   

17.
Warm and humid climate and gentle hilly topography have provided favourable conditions for the devel-opment of the weathering crust of the granite intrusions in the Longnan area, Jiangxi Province. REE is mostlyconcentrated in an adsorption state in clay in the wholly weathered zone. The rare-earth minerals enriched inthe parent rocks provided the source material for the REE enrichment. Exchangeable REE accounts for48-86%. Extraction experiments and stable isotopic study of clay minerals suggest that the downward infiltra-tion of meteoric water and increasing gradient of pH values have played an important role in the enrichment ofREE during the progressive weathering. Slight fractionation of individual REE can not change their distribu-tion patterns in the profiles. which are inherited from the parent rocks.  相似文献   

18.
A body of komatiitic amphibolite, an enclave within the Archean high-grade orthogneisses in southern India, shows mild chemical weathering under semiarid conditions. Along fractures, chemical weathering has advanced (Chemical Index of Alteration &sqbl0;CIA&sqbr0;=53; CIA of fresh rock approximately 26) to the extent that secondary Mg-Fe-Al clay minerals have formed and the rock has turned brownish red, soft, and fine grained. The weathering process has resulted in the mobilization and redistribution of the so-called immobile elements Fe, Al, Ti, and REE effected by the nature of secondary mineral formation (talc vs. aluminous clay minerals) and also possibly by soil microbes. In the initial stages of secondary mineral formation, there is a small loss of Fe, Al, and REE (noticeably Eu). However, in the fracture zone as well as in the incipiently altered zone, there is significant REE enrichment, probably affected by a different precipitation mechanism. Mobilized REE may have come from a minor alteration of clinopyroxene.  相似文献   

19.
Uniaxial compression tests were performed on different categories of weathering of three lithological units: Malanjkhand granite; Nagpur basalt; and Delhi quartzite, occurring in central and northern parts of India. The deformational behaviour is studied in terms of variation in tangent modulus (Et50) and initial modulus (Ei) due to weathering. The power relationship between uniaxial compressive strength (σc) and Et50 shows strong correspondence for weathering sequence of common rock types. This relationship has been established by regression analysis and significant correlation parameter (coefficient of determination, r2=0.87) for crystalline rocks. It is shown that there is a systematic decrease in stiffness ratio, that is, ratio of tangent modulus and uniaxial compressive strength with increased weathering state. Comparison of Et50 and Ei values has shown that Et50 decreases more gradually than Ei, and reduction is more drastic for Ei values with an increased degree of weathering in all the three rock types. The mode of failure has been found to be influenced by weathering extent in rocks. A brief account is given of the intrinsic characteristics of fresh and weathered rocks and mineralogical changes produced by weathering investigated quantitatively. Correlation drawn between the petrographical and mechanical indices has shown that mechanical properties are apparently dependent on the intrinsic characteristics of weathered rocks.  相似文献   

20.
通过贵阳花溪夹泥质薄层的灰岩风化壳剖面的粒度分布特征的研究,结合矿物成分分析,揭示出岩性不均一的灰岩风化壳的发育特征: 灰岩作为剖面主体的成土母岩,风化早期,其以碳酸盐矿物的大量溶蚀及酸不溶物的残余积累为特征,同时方解石的溶解也延缓了酸不溶物的风化; 后期,随着易溶盐类消失殆尽,酸不溶物作为风化主体,开始了类似其它岩类的风化过程。而灰岩中的泥质薄层夹层,作为风化壳的次要组分,在灰岩风化过程中,由于存在巨大的体积缩小变化,泥质薄层被错断并被灰岩的风化产物所包裹,延缓了其风化发育进程。于是,各端元组分由于所处的微环境的差异,受风化溶液的影响程度不同,按照各自的风化方向和演化方式进行。随着风化程度不断增强,泥质薄片的包裹体分解,端元组分逐渐混合、趋同,风化壳趋于均质化,以统一的风化成土作用向表生稳定的矿物转变。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号