首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A modified Gerdien cell was designed, evaluated, and built for measurement of the polar conductivities in clouds. This conductivity dropsonde was attached to a U.S. Weather Bureau, 1680 mHz, radiosonde for telemetry and to measure pressure, temperature, and relative humidity profiles. The combined instruments were ejected from aircraft, and others were released from balloons into the region of interest.Eight flights were made during the 1967 thunderstorm season. Three of these drops were successful in measuring conductivity inside of electrically active clouds. Two fair-weather profiles were measured for comparison purposes, and three of the drops were faulty.These very preliminary results tend to indicate considerable electrical conductivity in thunderclouds. The data are too few to support a strong statement in favor of increased conductivity, but the instruments were sufficiently reliable to prove that the conductivity was not reduced, as is normally assumed, in the clouds investigated.This research was supported by the Atmospheric Sciences Section, National Science Foundation under Grant GA-701.  相似文献   

2.
The Global Atmospheric Electrical Circuit and Climate   总被引:2,自引:1,他引:2  
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales.  相似文献   

3.
Measurements of atmospheric electrical and meteorological parameters during different meteorological conditions indicate that the use of the conception Fair weather condition in atmospheric electricity is discussable. Fair weather contains a very broad stability range, from very unstable to strong stable stability of the atmosphere. For turbulent fluctuations of the electric parameters (the most local variations) the variations are determined by the micrometeorological processes for all stability conditions.These fluctuations represent frequencies greater than one period per four minutes. For lower frequencies (less local variations), however, the stability dependency increases. During stable conditions the electric field and vertical current density were nearly wholly influenced by the charges and their transfer in the nearest layer. During near-neutral and unstable conditions the electrical parameters were influenced by more separated sources. Measurements of how well Ohm's law was fulfilled also indicate the difficulties by using the conception fair weather. The measurements also indicate the importance of taking the convection current density into consideration in studies of the electric charge transfer in the atmosphere.In the more large scale of variations measurements of the electric field by radiosoundings show that 88% of the ionospheric potential is derived from the troposphere, where the meteorological processes are of fundamental character for the atmospheric electrical phenomena. The relatively great stability of the diurnal variation of the large scale or global electric field is also valid for the meteorological processes in this scale of variations.  相似文献   

4.
Liquid and solid particles in the plumes of jet aircraft cruising in the upper troposphere and lower stratosphere lead to the formation of ice clouds (contrails), modify the microphysical properties of existing cirrus clouds, and provide sites for heterogeneous chemical reactions. Characterization of aviation-produced particles in terms of physico-chemical properties is an important step in assessing the global impact of aircraft emissions upon atmospheric chemistry and climate parameters. Chemistry and microphysics of the gas-aerosol system in aircraft plumes and its evolution in the atmosphere is a field of intense research. This paper reviews the current knowledge (mid-1998) and outlines possible atmospheric implications.  相似文献   

5.
The upward lightning (UL) initiated from the top of tall buildings (at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground (CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs (OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning (IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL (STUL) is initiated mainly during the dissipation stage of a thunderstorm.  相似文献   

6.
Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s−1.  相似文献   

7.
The global atmospheric electrical circuit sustains a vertical current density between the ionosphere and the Earth's surface, the existence of which is well-established from measurements made in fair-weather conditions. In overcast, but non-thunderstorm, non-precipitating conditions, the current travels through the cloud present, despite cloud layers having low electrical conductivity. For extensive layer clouds, this leads to space charge at the upper and lower cloud boundaries. Using a combination of atmospheric electricity and solar radiation measurements at three UK sites, vertical current measurements have been categorised into clear, broken, and overcast cloud conditions. This approach shows that the vertical “fair weather” current is maintained despite the presence of cloud. In fully overcast conditions with thick cloud, the vertical current is reduced compared to thin cloud overcast conditions, associated with the cloud's resistance contributions. Contribution of cloud to the columnar resistance depends both on cloud thickness, and the cloud's height.  相似文献   

8.
Recent Results from Studies of Electric Discharges in the Mesosphere   总被引:3,自引:3,他引:0  
The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge by imaging cameras from the ground, but effects on the upper atmosphere by electromagnetic radiation from lightning are also considered. During the past few years, co-ordinated observations over Southern Europe have been made of a wide range of parameters related to sprites and their causative thunderstorms. Observations have been complemented by the modelling of processes ranging from the electric discharge to perturbations of trace gas concentrations in the upper atmosphere. Observations point to significant energy deposition by sprites in the neutral atmosphere as observed by infrasound waves detected at up to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen by the first simultaneous observations of IC activity, sprite activity and broadband, electromagnetic radiation in the VLF range. Simulations of sprite ignition suggest that, under certain conditions, energetic electrons in the runaway regime are generated in streamer discharges. Such electrons may be the source of X- and Gamma-rays observed in lightning, thunderstorms and the so-called Terrestrial Gamma-ray Flashes (TGFs) observed from space over thunderstorm regions. Model estimates of sprite perturbations to the global atmospheric electric circuit, trace gas concentrations and atmospheric dynamics suggest significant local perturbations, and possibly significant meso-scale effects, but negligible global effects.  相似文献   

9.
Plasma vortices in the ionosphere and atmosphere   总被引:1,自引:0,他引:1  
Vortices observed in ionized clouds of thunderstorm fronts have the nature of plasma vortices. In this work, the need to account for the electrostatic instability of plasma in the origination, intensification, and decay of plasma vortices in the atmosphere is shown. Moisture condensation results in mass-energy transfer under the inhomogeneous spatial distribution of aerosols. If a phase volume of natural oscillations is transformed in the frequency-wave vector space in inhomogeneous plasma, the damping of plasma oscillations promotes an increase in the pressure gradients normal to the geomagnetic field. Excitation of the gradient instabilities is probable in atmospheric plasma formations.  相似文献   

10.
The results of the experiments, during which we revealed that the flux of neutrons in the atmosphere increases in correlation with electromagnetic pulses of lightning discharges, have been analyzed. The mechanisms of charged particle acceleration and nuclear reactions that can be responsible for neutron generation have been analyzed. It has been indicated that the probability of nuclear synthesis reactions in a lightning channel, which is traditionally considered as the source of neutrons in a thunderstorm atmosphere, is extremely low. The generation of neutrons in thunderstorm electric fields is related to photonuclear reactions in gigantic upward atmospheric discharges caused by relativistic runaway electron bremsstrahlung.  相似文献   

11.
辐射参数化对海南岛海风雷暴结构模拟的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
本文利用高分辨率WRF模式探讨了两组短波、长波辐射参数化方案(Dudhia+RRTM、RRTMG+RRTMG)对海南岛一次海风雷暴模拟的影响及其可能的物理机制.结果表明,辐射参数化能影响大气的加热程度和近地面能量,决定海陆温差和气压差,改变海南岛的海风特征,最终影响海风雷暴的发生发展.Dudhia+RRTM方案模拟的短波、长波综合加热率、感热通量以及潜热通量都大于RRTMG+RRTMG方案,造成了前者模拟的近地面能量偏高,大气层结也表现得更加不稳定,进而使得该方案下的海陆温差和气压差相对较大,Dudhia+RRTM方案模拟的海风明显强于RRTMG+RRTMG方案,能提供更好的水汽输送和抬升条件,有利于海风雷暴的发生发展,因此其模拟的雷暴活动范围和对流中心强度都要大于RRTMG+RRTMG方案.  相似文献   

12.
Summary The results of a recent investigation on the free growth rate and the growth forms of ice in supercooled water and aqueous solutions are presented. The results are used to discuss the structure of frozen drops, the structure of hailstones, the mechanisms which are responsible for the glaciation of atmospheric clouds and the mechanisms which cause cloud electrification. It was found that the presence of dissolved salts and dust particles in cloud drops favor the formation of spongy and polycristalline ice, that it is unlikely for frozen cloud drops to develop into hexagonal shaped ice single-crystals, and that it is also unlikely that in atmospheric clouds freezing drops shatter and splinter. The latter result casts serious doubts on the splintering mechanism to contribute to thunderstorm electrification and to promote glaciation of clouds.This work was supported by the National Science Foundation under Grant No. GP 2922.  相似文献   

13.
Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it is possible on Mars, Venus and Titan. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews the theory, and, where available, measurements, of planetary atmospheric electricity which is taken to include ion production and ion–aerosol interactions. The conditions necessary for a planetary atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification could be important throughout the solar system, particularly at the outer planets which receive little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. Atmospheric electrical processes on Titan, before the arrival of the Huygens probe, are summarised. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. However, Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres.  相似文献   

14.
The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth’s atmosphere during the solar events in October 21–31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29–30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.  相似文献   

15.
The dominant role of clouds in modulating and interacting with radiative energy transports within the atmosphere, in providing precipitation, transporting water and influencing air-chemical processes is still not understood well enough to be accurately represented within atmospheric circulation and climate models over all regions of the globe. Also the extraction of real-world cloud properties from satellite measurements still contains uncertainties. Therefore, various projects have been developed within the Global Energy and Water Cycle Experiment (GEWEX), to achieve more accurate solutions for this problem by direct measurements within cloud fields and other complementary studies. They are based on the hypothesis, that most relevant properties of cloud fields can be parametrized on the basis of the prognostic field variables of atmospheric circulation models, and that the cloud microphysical properties can directly be related – with additional parameters on the particle shapes etc. – to the radiative transfer properties.One of these projects has been the European Cloud and Radiation Experiment (EUCREX) with its predecessor ICE (International Cirrus Experiment).The EUCREX and ICE provided a common platform for research groups from France, Germany, Sweden and the United Kingdom to concentrate their efforts primarily on high, cold cirrus. They showed, with data from satellites, that this cloud species enhances the atmospheric greenhouse-effect. Numerical mesoscale models were used in sensitivity studies on cloud developments. In-situ measurements of cloud properties were made during more than 30 aircraft missions, where also in-flight comparisons of various instruments were made to ensure the quality of data sets measured from different aircraft. The particle sampling probes, used for in-cloud measurements, showed a disagreement in total number density in all ranges between about 20–50%, while all other instruments agreed quite satisfactorily. A few measured holographic data provided information on typical ice-crystal shapes, which were used in numerical simulations of their absorption and scattering properties.Several new instruments for both in-situ and remote measurement, such as a polar nephelometer, a chopped pyrgeometer and an imaging multispectral polarimeter (POLDER) for cloud and radiation measurements were tested and improved. New algorithms were developed for cloud classifications in multispectral satellite images and also for simulations of the scattering of radiation by non-spherical particles.This paper primarily summarizes the EUCREX results obtained between 1989 and 1996, and provides examples of the many results which have been obtained so far. It is not a complete review of the world-wide state in this field, but it tries to place the EUCREX results into the world-wide development. Therefore many references are made to the results of other groups, which in turn influenced the work within EUCREX.  相似文献   

16.
The volumetric generation rate of secondary electrons, produced by cosmic radiation in the Earth’s atmosphere and able to accelerate in a thundercloud electric field, has been calculated as a function of height above sea level. It is recommended to use the obtained function as a source when modeling atmospheric breakdown in thunderstorm fields with the participation of relativistic runaway electron avalanches. It has been indicated that ionization of the atmosphere by a cosmic particle with an energy of 1016 eV cannot initiate lightning.  相似文献   

17.
Measurements made with a new fast-response suspended sand sensor have for the first time enabled the turbulence characteristics of a natural sand suspension to be studied. Suspended sand concentration measurements, together with fast-response current measurements, were made 18 cm above a sandy bed under a strong tidal current. They showed a highly variable concentration field, dominated by clouds of sand which took 2 to 10 s to sweep past the sensor. The concentration spectrum had peak energy at a wavelength of about 3 m, and exhibited a −5/3 power dependence at high frequencies. Damping of the turbulence intensity of the current was observed when sand was suspended. A spectral approach produced more plausible values for the upward Reynolds flux of sediment than the direct covariance technique. The calculated upward fluxes were appreciably smaller than the settling fluxes around the time of maximum current, contrary to the expectation for an equilibrium concentration profile. The turbulence characteristics of the concentration field displayed marked similarities with standard results from atmospheric temperature measurements, strengthening assumptions commonly made in the prediction of sediment transport rates.  相似文献   

18.
A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.  相似文献   

19.
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft.  相似文献   

20.
Physical mechanisms of formation of the global electric circuit (GEC) are considered and energy estimates are obtained for aeroelectric processes. Global thunderstorm activity, the electrodynamics of mesoscale convective systems, the electric fields of the magnetospheric dynamo and ionospheric dynamo region, and the electrostatic field of the global unipolar generator form a quasi-stationary aeroelectric state and maintain the balance of currents of the GEC atmospheric interval. In essence, the GEC is an open dissipative system including microphysical and electrohydrodynamic processes of generation and dissipation of the aeroelectric energy. The atmospheric electric field in the range of short-period aeroelectric pulsations has power-law spectra and contains coherent aeroelectric structures. The main GEC characteristics can serve as an indicator of a stationary state and spatiotemporal dynamics of atmospheric processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号