首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of regional attenuation in computing the local magnitude, ML, from strong motion data gathered at distances less than 100 km may lead to systematic underestimates approaching 0·5 magnitude units (Trifunac & Herak, Soil Dynamics and Earthquake Engineering, 1992, 18, 229-41). The use of the attenuation law Att(Δ), for example, with synthetic estimates of Wood-Anderson seismometer response, during the Loma Preita earthquake, leads to estimates of ML which agree with the surface wave and moment magnitudes, and which are essentially distance-independent.  相似文献   

2.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

3.
It is shown that a new definition of MLSM (Trifunac14), which is computed from recorded strong motion earthquake accelerograms, leads to stable and unbiased estimates of the local earthquake magnitude ML (Richter8) for epicentral distance R < 100 km and for 3 MnL < 6.5. Tables of the uniform estimates using this new MLSM are presented for all earthquakes contributing to the current data base of free field strong motion accelerograms in EQINFOS files (Lee and Trifunac6).  相似文献   

4.
Turkey was struck by two major events on August 17th and November 12th, 1999. Named Kocaeli (Mw=7.4) and Düzce (Mw=7.2) earthquakes, respectively, the two earthquakes provided the most extensive strong ground motion data set ever recorded in Turkey. The strong motion stations operated by the General Directorate of Disaster Affairs, the Kandilli Observatory and Earthquake Research Institute of Bogazici University and Istanbul Technical University have produced at least 27 strong motion records for the Kocaeli earthquake within 200 km of the fault. Kocaeli earthquake has generated six motions within 20 km of the fault adding significantly to the near-field database of ground motions for Mw>=7.0 strike–slip earthquakes. The paper discusses available strong motion data, studies their attenuation characteristics, analyses time domain, as well as spectral properties such as spectral accelerations with special emphasis on fault normal and fault parallel components and the elastic attenuation parameter, kappa. A simulation of the Kocaeli earthquake using code FINSIM is also presented.  相似文献   

5.
We investigate the dependence of the S-wave high-frequency spectral-decay parameter, κ (“kappa”) — a measure of wave attenuation — on ground-motion amplitude. 21 three-component accelerograms from two adjacent sediment sites in the town of Lefkas, western Greece, are used, representing 17 earthquakes with magnitudes Mw 4.7–7.0 and hypocentral distances 12–93 km. Recorded peak horizontal ground accelerations (PGA) and velocities (PGV) are 22–540 cm/s2 and 1.3–54.5 cm/s.Fourier amplitude spectra are computed for S-wave windows, and the frequency range is visually determined where the high-frequency spectral decay can be approximated by a straight line on the linear-log plot; its slope (and hence κ) is computed by linear regression. κ is found to depend on hypocentral distance as κ=0.108+0.058R (r=0.518).As PGV increases from 1.3 to 54.5 cm/s, κ0 (κ at 0 km, characterising inelastic attenuation in the site's subsurface geology) varies between 0.060 and 0.160 s. κ0 is found to correlate very strongly with log MGA (r=0.645) (MGA — mean horizontal acceleration in the S-wave window) but also with log PGA (r=0.447) and log PGV (r=0.627). We attribute this behaviour to sediment non-linearity (shear-modulus degradation), resulting in the decrease of the site's dominant-resonance frequency (from about 3.5 to 2.4 Hz) and leading to the increase of κ0. Our results imply that at sediment sites, an important contribution to κ comes from wave attenuation (damping) in the softest sediments and show that κ0 is amplitude dependent, thus being a measure of sediment non-linearity.  相似文献   

6.
Duration of high frequency (5–25 Hz) radiation of energy from earthquake sources in California is consistent with the estimates of fault length and with dislocation velocity estimates of 2–3 km/sec. This duration can be described by an exponential function of magnitude for 2·5 < M < 7·5. It is related to the times it takes the dislocation to spread over the fault width (1/f2), and the fault length (~ 1/f1), and to reach its ultimate amplitude (T0). The results in this paper can be used to estimate the range of amplitudes and the duration of long period pulses of strong ground motion near faults, as these long period pulses can be related to the properties of high-frequency radiation from the source. Such pulses must be considered in the analyses of yielding structures, when the average peak acceleration of the pulse exceeds the yield resistance seismic coefficient of the structure.  相似文献   

7.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

8.
Results from plasma wave experiments in spacecrafts give support to nonlinear interactions involving Langmuir, electromagnetic, and ion-acoustic waves in association with type III solar radio bursts. Starting from a general form of Zakharov equation (Zakharov, V.E., 1985. Collapse and self-focusing of Langmuir waves. Hand-book of Plasma Physics Cap.2, 81–121) the equations for electric fields and density fluctuations (density gratings) induced by a pair of counterpropagating Langmuir waves are obtained. We consider the coupling of four triplets. Each two triplets have in common the Langmuir pump wave (forward or backward wave) and a pair of independent density gratings. We numerically solve the dispersion relation for the system, extending the work of (Alves, M.V., Chian, A.C.L., Moraes, M.A.E., Abalde, J.R., Rizzato, F.B., 2002. A theory of the fundamental plasma emission of type- III solar radio bursts. Astronomy and Astrophysics 390, 351–357). The ratio of anti-Stokes (AS) (ω0+ω) to Stokes (S) (ω0-ω*) electromagnetic mode amplitudes is obtained as a function of the pump wave frequency, wave number, and energy. We notice that the simultaneous excitation of AS and S distinguishable modes, i.e., with Re{ω}=ωr≠0, only occurs when the ratio between the pump wave amplitudes, r is ≠1 and the pump wave vector k0 is , W0 being the forward pump wave energy. We also observe that the S mode always receives more energy.  相似文献   

9.
The currently available empirical scaling laws for estimation of spectral amplitudes are limited to periods longer than 0–04 s. However, for design of equipment and stiff structures on multiple and distant supports, exposed to strong shaking near faults where peak accelerations can exceed 1g, specification of design ground motions at higher frequencies is required. This paper presents a method for extrapolation of pseudo-relative velocity spectral amplitudes of strong earthquake shaking to short periods (0–01 < T < 0–04 sec). The extrapolated spectra can be used as a physical basis for defining design spectral amplitudes in this higher-frequency range. The analysis in this paper implies that for typical strong motion accelerations, particularly on sedimentary sites in California, the peak ground accelerations are projected to be unaffected by frequencies higher than those recorded. Consequently, in California, the high-frequency pseudo-acceleration spectra can be approximated from the recorded absolute peak accelerations.  相似文献   

10.
A collection of ground‐motion recordings (1070 acceleration records) of moderate (5.1⩽ML⩽6.5) earthquakes obtained during the execution of the Taiwan Strong Motion Instrumentation Program (TSMIP) since 1991 was used to study source scaling model and attenuation relations for a wide range of earthquake magnitudes and distances and to verify the models developed recently for the Taiwan region. The results of the analysis reveal that the acceleration spectra of the most significant part of the records, starting from S‐wave arrival, can be modelled accurately using the Brune's ω‐squared source model with magnitude‐dependent stress parameter Δσ, that should be determined using the recently proposed regional relationships between magnitude (ML) and seismic moment (M0) and between M0 and Δσ. The anelastic attenuation Q of spectral amplitudes with distance may be described as Q=225 ƒ1.1 both for deep (depth more than 35 km) and shallow earthquakes. The source scaling and attenuation models allow a satisfactory prediction of the peak ground acceleration for magnitudes 5.1⩽M⩽6.5 and distances up to about 200 km in the Taiwan region, and may be useful for seismic hazard assessment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

12.
Ma  Qiang  Wang  Fuchen  Tao  Dongwang  Xie  Quancai  Liu  Heyi  Jiang  Peng 《Journal of Seismology》2021,25(6):1537-1555

Ground motion amplification induced by topography plays a vital role in engineering seismology. A topographic array of 8 accelerographs has been operating along the ridge in Xishan Park since 2007. The topographic site effects in Zigong city are studied based on the strong motion data of 2008 Ms 8.0 Wenchuan earthquake (the epicentral distance?=?225 km) and 2019 Ms 5.2 Zizhong earthquake (the epicentral distance?=?29 km). We compare the peak ground acceleration (PGA) of the two earthquakes and find that the PGA of Station 7#, which locates on a relatively steep slope, is amplified by 4.41 times comparing with the reference station in Zizhong earthquake, while this value is only 1.62 in Wenchuan earthquake. Fourier amplitude spectrum shows that the high frequency content of Zizhong earthquake is more abundant because of its smaller epicentral distance. By using the standard spectral ratio (SSR) method, we conclude that the amplification occurs because high-frequency ground motion is likely to resonate at small-scale features. Finally, the 3D numerical simulations are used to verify these conclusions. Our work indicates that more sophisticated numerical models need to be established for more accurate topographic site effects quantification. In addition, the influence of nearby topographic features should be considered when selecting reference stations.

  相似文献   

13.
Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake   总被引:2,自引:2,他引:0  
The Susamyr earthquake of August 19, 1992 in Kyrgyzstan is one of the largest events (Ms = 7.4, Mb = 6.8) of this century in this region of Central Asia. We used broadband and long period digital data from IRIS and GEOSCOPE networks to investigate the source parameters, and their space-time distribution by modeling both body and surface waves. The seismic moment (M0 = 6.8 × 1019 N m) and the focal mechanism were determined from frequency-time analysis (FTAN) of the fundamental mode of long period surface waves (100–250 s). Then, the second order integral moments of the moment-rate release were estimated from the amplitude spectra of intermediate period surface waves(40–70 s). From these moments we determined a source duration of 11–13 s, major and minor axes of the source of 30 km and 10–22 km, respectively; and an instant centroid velocity of 1.2 km/s. Finally, we performed a waveform inversion of P and SH waves at periods from 5–60 s. We found a source duration of 18–20 s, longer than the integral estimate from surface wave amplitudes. All the other focal parameters inverted from body waves are similar to those obtained by surface waves ( = 87° ± 6°, = 49° ± 6°, = 105° ± 3°, h = 14 ± 2 km, and M0 = 5.8 ± 0.7 × 1019 N m). The initial rupture of this shallow earthquake was located at the south-west border of Susamyr depression in the western part of northern Tien Shan. A finite source analysis along the strike suggests a westward propagation of the rupture. The main shock of this event was preceded 2 s earlier by small foreshock. The main event was almost immediately followed by a very strong series of aftershocks. Our surface and body wave inversion results agree with the general seismotectonic features of the region.  相似文献   

14.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

15.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

16.
The 26th April 1986 Dharamsala earthquake (mb 5.5) occurred in the Kangra region of Himachal Himalaya, which lies in the rupture zone of great Kangra earthquake of 1905. This was the first moderate sized earthquake to be recorded at a few sites of the strong ground motion array in the NW Himalaya. The accelerograms of this earthquake have been used to estimate its source parameters, site amplification functions and to estimate the effective shear wave attenuation factor Qβ in the frontal region of Himachal Himalaya. A double couple fault plane solution for the earthquake has been obtained based on the spectra of the transverse component of the accelerograms. The estimated values of the source parameters are seismic moment: 2.1×1024 dyne-cm, static stress drop (Δσ): 36 bars, source radius (r): 2.8 km and moment magnitude (Mw): 5.4. The estimated average values of effective shear wave attenuation factor Qβ for various sites are in the range of 125 to 300 with an overall spatial average of 239. The influence of local site effects on the observed PGA values have been examined on the basis of site amplification functions.  相似文献   

17.
The majority of structural health monitoring methods are based on detecting changes in the modal properties, which are global characteristics of the structure, and are not sensitive to local damage. Wave travel times between selected sections of a structure, on the other hand, are local characteristics, and are potentially more sensitive to local damage. In this paper, a structural health monitoring method based on changes in wave travel times is explored using strong motion data from the Imperial Valley Earthquake of 1979 recorded in the former Imperial County Services (ICS) Building, severely damaged by this earthquake. Wave travel times are measured from impulse response functions computed from the recorded horizontal seismic response in three time windows—before, during, and after the largest amplitude response, as determined from previous studies of this building, based on analysis of novelties in the recorded response. The results suggest initial spatial distribution of stiffness consistent with the design characteristics, and reduction of stiffness following the major damage consistent with the spatial distribution of the observed damage. The travel times were also used to estimate the fundamental fixed-base frequency of the structure f1 (assuming the building deformed as a shear beam), and its changes during this earthquake. These estimates are consistent with previous estimates of the soil–structure system frequency, fsys, during the earthquakes (f1<fsys as expected from soil–structure interaction studies), and with other estimates of frequency (f1 from ETABS models, and fsys from ambient vibration tests, and “instantaneous” f1 from high-frequency pulse propagation).  相似文献   

18.
This article explores the possibility to measure deformations of building foundations from measurements of ambient noise and strong motion recordings. The case under study is a seven-storey hotel building in Van Nuys, California. It has been instrumented by strong motion accelerographs, and has recorded several earthquakes, including the 1971 San Fernando (ML=6.6, R=22 km), 1987 Whittier–Narrows (ML=5.9, R=41 km), 1992 Landers (ML=7.5, R=186 km), 1992 Big Bear (ML=6.5, R=149 km), and 1994 Northridge (ML=6.4, R=1.5 km) earthquake and its aftershocks (20 March: ML=5.2, R=1.2 km; 6 December, 1994: ML=4.3, R=11 km). It suffered minor structural damage in 1971 earthquake and extensive damage in 1994. Two detailed ambient vibration tests were performed following the Northridge earthquake, one before and the other one after the 20 March aftershock. These included measurements at a grid of points on the ground floor and in the parking lot surrounding the building, presented and analyzed in this article. The analysis shows that the foundation system, consisting of grade beams on friction piles, does not act as a “rigid body” but deforms during the passage of microtremor and therefore earthquake waves. For this geometrically and by design essentially symmetric building, the center of stiffness of the foundation system appears to have large eccentricity (this is seen both from the microtremor measurements and from the earthquake recordings). This eccentricity may have contributed to strong coupling of transverse and torsional responses, and to larger than expected torsional response, contributing to damage during the 1994 Northridge, earthquake.  相似文献   

19.
—The development of the digital seismic network in the Azores Archipelago during recent years made it possible to obtain the amplitudes (waveform) of recorded motion in a large set of stations. With this new data, maximum amplitudes of the Wood Anderson seismograph are computed, for each station/component, which, together with epicentral distances, allows for the estimation of local magnitude M L . We used data recorded in 8 digital permanent three-component stations, with inter-stations distances up to 300 km, in the period June 1998 – June 2000, corresponding to a set of 1315 events with magnitude (M L or M D ) 2<M<5.8 and epicenters located in the Azores region, to estimate the coefficients of the equation to compute M L , as well as to determine the corrections to be applied to each station. The new set of parameters, formed by attenuation coefficients and station corrections, were introduced in the calculations of the M L , leading to smaller dispersions in the analyzed dataset. We also conclude that the attenuation in the first 150 km is similar to the California values, although higher for longer distances.  相似文献   

20.
2020年1月19日和2020年2月21日在新疆喀什地区先后发生MS6.4和MS5.1地震,针对新疆强震动台网收集到的128条强震动记录进行统计分析,研究2次地震记录的幅值及反应谱特性,并与两个现行规范设计反应谱进行对比,结果表明:(1)震级相同时,震中距越小加速度反应谱越大,且加速度反应谱衰减速度越慢;震中距相同时,震级越大加速度反应谱越大,且加速度反应谱衰减速度越慢;(2)震级越大加速度谱值、速度谱值、位移谱值越大;(3)MS6.4、MS5.1地震波加速度反应谱及其平均值曲线相近,与我国现行规范加速度反应谱相比差别很大。建议在新疆喀什地区采用基于当地强震记录的加速度反应谱进行结构抗震设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号