首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
青藏高原雨季降水凝结潜热的估算研究   总被引:2,自引:2,他引:0  
李栋梁  柳苗  王慧 《高原气象》2008,27(1):10-16
利用美国NOAA系列卫星观测的青藏高原区(75°~105°E,25°~40°N)水平分辨率为2.5°×2.5°经纬度网格,共91个网格点的1974年6月—2005年12月的月平均射出长波辐射(简称OLR)资料,青藏高原93个常规气象站的1961—2005年的月降水资料,在研究降水量与OLR关系及其气候分区的基础上,分区、分网格建立了利用OLR估算降水量,进而估算降水凝结潜热的数学模型。利用所得模型计算出青藏高原雨季1961—2005年历年逐月的降水凝结潜热。结果表明,高原东部多年平均降水量为401.5 mm,凝结潜热为18.55×1020J。近45年高原东部的降水凝结潜热有所增大,其递增率为0.218×1020J/10a,相当于每10年增加1.2%。高原总体的降水凝结潜热及其变率略大于高原东部。  相似文献   

2.
利用国家气象信息中心基于最优插值法(Optimal Interpolation,OI)、ANUSPLIN插值法(AV 2.0)、普通克里格法(Ordinary Kriging,OK)的1.0°×1.0°与0.5°×0.5°格点化的1961—2004年中国区域月温度和月降水资料及1961—2004年美国NCDC的GHCN 5.0°×5.0°月降水资料,对中国大陆地区温度和降水不同插值方法空间插值数据的精度及时间序列进行了对比研究。结果表明:在1961—2004年平均气候态下,中国区域不同插值法插值后的降水和温度空间分布型较一致,年循环变化也较一致。在中国区域、东部区域和西部区域,OI与AV 2.0方法插值的降水场绝对误差分别为2.15 mm、1.28 mm和0.00 mm,OK与AV 2.0方法插值的温度场绝对误差分别为0.20℃、0.05℃和0.45℃。对于中国区域降水场时间序列,AV 2.0和OI方法插值的降水与GHCN不同季节的降水变化趋势较一致,且不同插值方法插值的夏季降水量差异较大,冬季降水量差异较小。1961—2004年AV 2.0与OI方法插值的降水场相关系数在0.22—0.98之间变化,冬季和春季降水场相关性较高,夏季和秋季降水场相关性较低;个别年份秋季和冬季插值后降水量的偏差稍大,最大偏差达3.08 mm,1961—2004年平均降水量偏差为0.64 mm。AV 2.0与OK方法插值的年平均温度差值小于0.54℃,且多年时间序列变化趋势较一致。  相似文献   

3.
2008年初全国雨雪冰冻天气的OLR资料分析   总被引:2,自引:1,他引:1  
吴晓 《气象》2009,35(4):87-93
2008年1月至2月初,中国发生大范围长时间的雨雪冰冻天气气候事件,用NOAA-18气象卫星的OLR资料,对这一极端天气气候事件做了OLR资料特征分析.统计得出这一时段内OLR候距平与候降水量的关系式:Y=A+B×OLRJP,在江南、华南地区其相关系数为0.60525;计算了中国区域及其主要气象台站1989-2008年的月OLR标准差,得出中国区域月OLR标准差1989-2008年段明显高于1989-2000年段,表明近年来极端气候事件增多;从OLR候、旬等值线图和距平图分析得出:卫星OLR资料的等值线图,特别是距平等值线图,能较好地反映降水天气事件,尤其是长时间降水的极端天气气候事件,在日平均OLR等值线图上,OLR值低表明云系越高,降水越强;在候、旬平均OLR等值线图上,OLR越低表明降水云持续的时间长;而候、旬OLR距平的大小则揭示了观测地区的旱涝程度,候、旬OLR负距平越低表示超过常年同期的降水强度越强和持续的时间越长.  相似文献   

4.
利用2004-2006年FY-2C卫星云图资料,统计了云顶亮温与焦作市降水量的关系;并根据相邻两张云图中云顶低亮温中心移动的距离和时间,确定云的移速.在此基础上,建立了层状云和积状云降水估算方程.经对2005-2006年估算结果统计,层状云有无降水预报准确率为80%;对4次积状云降水的估算结果为1次漏报、1次降水量级误差较大、2次预报正确,准确率达50%.  相似文献   

5.
利用2004-2006年FY-2C卫星云图资料,统计了云顶亮温与焦作市降水量的关系;并根据相邻两张云图中云顶低亮温中心移动的距离和时间,确定云的移速。在此基础上,建立了层状云和积状云降水估算方程。经对2005-2006年估算结果统计,层状云有无降水预报准确率为80%;对4次积状云降水的估算结果为1次漏报、1次降水量级误差较大、2次预报正确,准确率达50%。  相似文献   

6.
中国大陆OLR与西北夏季降水   总被引:6,自引:0,他引:6  
李栋梁 《气象学报》1992,50(3):355-359
中国西北地域辽阔,地形复杂。该区内大部分地方属干旱、半干旱气候区,降水量的时空分布差异很大。为研究这种差异性,作者曾将西北地区夏季(6—8月)降水总量作了EOF分解,指出西北夏季降水总量与热带太平洋海温及ENSO事件关系密切;蒋尚城等用9年NOAA卫星观测的OLR资料对长江流域地区夏季雨量进行的估算、徐国昌等用OLR对夏季青藏高原月雨量及凝结潜热的估算,均得到较好的结果。这些研究表明,OLR与大陆夏季降水量存在着与热带海洋上一样好的关系。由于西北夏季雨量集中,6—8月降水量占全年雨量的一半以上。OLR通过云的变化与降水量之间必然存在较好的相关性。  相似文献   

7.
基于GIS降水空间分析的逐步插值方法   总被引:17,自引:0,他引:17  
根据长江中上游697个气象观测站1971—2000年30年降水资料,利用逐步回归方法和地理信息技术(GIS),建立了平均季降水和年降水与4km分辨率的DEM、坡向、坡度等地形数据的回归方程,并通过了信度为0.05的F检验,将降水量中地形影响部分分离出来。在此基础上,发展了逐步插值方法(SIA),并与GIS技术和多元逐步回归方法结合,显著提高了年、季降水空间分布的计算精度。结果表明:SIA季节降水空间分布的相对误差为6.86%,绝对误差为13.07mm,平均变差系数为0.070,平均相关系数为0.9675;年降水量的绝对误差为72.1mm,相对误差为7.34%,平均变差系数为0.092,相关系数达到了0.9605。对SIA年平均降水量的分析表明,采用3—5步的SIA计算,就可以显著提高计算精度,绝对误差由211.0mm下降到62.4mm,相对误差由20.74%下降到5.97%,变差系数从0.2312下降到0.0761,相关系数由0.5467提高到0.9619,SIA方法50步的计算表明,SIA计算的结果一致收敛于观测值。  相似文献   

8.
近50a中国降水格点数据集的建立及质量评估   总被引:11,自引:2,他引:9  
赵煜飞  朱江  许艳 《气象科学》2014,34(4):414-420
基于2012年6月更新的高质量2 400个台站降水资料,采用薄盘样条法,制定了采用3个自变量(经度、纬度、海拔高度)、降水量开平方预处理、3次样条的插值方案,并引入数字高程资料,以减弱中国独特地形条件下高程对降水空间插值精度的影响,并对1961—2010年中国区域地面降水站点资料进行了空间内插,得到了中国地面降水0.5°×0.5°格点数据集。经数据集的质量评估结果表明:分析值与站点观测值均方根误差平均为0.49 mm,相关系数平均达0.93(通过0.01的显著性检验),夏季插值误差高于冬季,东南地区误差普遍高于其他地区。冬、春、夏、秋季绝大多数台站绝对误差在±10 mm/月以内。冬、春、夏、秋季分别有60%、82%、54%、77%的台站相对误差在±10%之间。插值后的格点化降水资料能够比较细致、准确地描述中国大陆年平均降水场的东南多、西北少的主要空间特征,但也平滑掉了范围很小的降水极值中心。台站分布越密集的地方,插值效果越好,并且最近距离小于40 km的台站插值精度较高,大于40 km插值精度衰减较快。  相似文献   

9.
利用NOAA卫星观测的OLR资料和地面观测雨量资料,分析我国华北,长江中下游和华南地区年,季降水与OLR的关系,结果表明,OLR负距平(正距平)与多雨区(少雨区)对应。OLR与降雨量的负相关 性在华南地区显著,在华北地区不显著,本文对原始场进行处理,用EOF-CCA方法建立了华北南部夏季,年降雨估算模型,使OLR与降水的拟合程序明显提高。  相似文献   

10.
我国逐日降水量格点化方法   总被引:19,自引:0,他引:19       下载免费PDF全文
国家气象信息中心(NMIC)和美国大气海洋局气候预测中心合作开发了"中国逐日格点降水量实时分析系统(V1.0)",并已在NMIC投入业务试运行。该系统基于我国2419个国家级地面气象站日降水量观测(08:00—08:00,北京时)数据,采用"基于气候背景场"的最优插值方法,实时生成空间分辨率为0.5°×0.5°的格点化日降水量资料。通过对汛期典型区域和单站降水过程的对比分析表明:该格点化产品的精度较高,能准确捕捉并再现每一次降水过程。误差分析表明:约91%的数据绝对误差小于1.0 mm/d。该产品在定量分析天气实况、检验天气气候模式精度、检验卫星产品精度等方面有应用前景。  相似文献   

11.
中国西北地区云的分布及其变化趋势   总被引:8,自引:1,他引:8  
利用1983年7月—2001年9月ISCCP D2云的月平均资料,针对西北地区15种不同类型云的分布特征进行了分析,给出了中、低云量之和以及高云量在3个气候子区的多年变化趋势,初步探讨了其形成机制。结果表明:水层云、冰层云、水雨层云、冰雨层云和深对流云的光学厚度和云水路径值最大;水层云主要出现在天山山区、北疆地区和陕西南部,冰层云主要出现在北疆地区,水雨层云、冰雨层云和深对流云以及水高层云、冰高层云、卷层云的云量高值区在天山—昆仑山—祁连山一带以及陕南和/或陇南地区,因此上述地区也是有利于人工增水作业的地区。近20年中,高云量在3个气候区都呈明显下降趋势,中、低云量之和则呈上升趋势。西北地区云与地气系统之间可能存在这样一个过程:地面气温的升高,促使地面蒸发加剧,从而导致中、低云量增多而使降水增多,同时高云云量减少。  相似文献   

12.
利用GODAS逐月混合层深度(mixed layer depth,MLD)资料和中国160站逐月降水资料,分析了北太平洋MLD多年平均气候及异常特征,进一步研究了其对中国夏季降水年际异常的影响.结果表明:1)北太平洋30 ~ 40°N之间混合层最深,冬、春季明显大于夏、秋季.2)日期线附近的北太平洋中部海域是各季MLD年际异常共同最显著区域;仅夏季MLD年际异常与ENSO存在一定关系;秋、冬和春季MLD还存在明显年代际异常特征.3)当前冬北太平洋西部及中部MLD加深时,次年黄河下游部分地区、黄淮、江淮及长江以南大部分地区(广西南部除外)降水将偏少;河套地区、内蒙东部及东北大部降水可能偏多.  相似文献   

13.
热带西太平洋对流活动与中国夏季降水   总被引:1,自引:0,他引:1       下载免费PDF全文
利用 1 979~ 2 0 0 3年月平均射出长波辐射 (OLR)资料 ,分析了中国夏季江淮多 (少 )雨年的同期及前期热带太平洋地区OLR场分布特征。通过定义和计算OLR对流强度指数 ,探讨对流活动与中国夏季雨型的关系。结果表明 ,夏季热带西太平洋地区平均对流活动强度与同期江淮地区降水有很好的反相关关系 ,即当热带西太平洋地区对流活动强时 ,江淮地区降水易偏少 ,当对流活动弱时 ,江淮地区降水易偏多。不仅如此 ,前期冬、春季对流活动强度与夏季对流活动强度有明显的正相关关系 ,则可利用前期冬、春季对流活动强度对当年中国夏季降水趋势进行预测和补充订正。因此 ,热带西太平洋地区对流活动强弱对于中国夏季降水预测有一定的指示意义。  相似文献   

14.
天山山区大气水分循环特征   总被引:1,自引:0,他引:1  
将自然正交分解(EOF)和水平空间分辨率30"的地理信息数字高程(DEM)相结合,利用1961~2010年天山山区及其周边79个气象站月降水量应用梯度距离平方反比法计算面雨量,应用2000~2010年NCEP/NCAR逐日4次再分析1°(纬度)×1°(经度)资料计算水汽输送,研究了天山山区面雨量时空分布、水汽输送和外部水汽的降水转化率特征,以及降水转化率异常的初步成因。结果表明:1)天山西部和中部降水量平均在450 mm以上,东天山和天山西南端为150 mm左右。春季、夏季、秋季、冬季的面雨量分别为291.4×108 m3、625.9×108m3、218.1×108 m3和73.6×108m3,降水量分别为108.2 mm、232.4 mm、81.0 mm和27.4 mm,年降水量为449.0 mm。2)月水汽输送量呈正态单峰型分布,7月最大、1月最小,夏季水汽输送量为全年的41.3%,冬季为11.9%,春季、秋季分别为24.5%和22.3%。3)春季、夏季、秋季、冬季和年外部水汽的降水转化率分别为10.3%、12.6%、8.5%、5.4%和9.2%,降水转化率的大小与伊朗副热带高压、贝加尔湖高压脊和西亚副热带西风急流的位置和强度配置有关。  相似文献   

15.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

16.
东北地区旱涝的OLR特征分析   总被引:10,自引:1,他引:9       下载免费PDF全文
孙力  安刚 《应用气象学报》2000,11(2):228-235
该文选取了东北地区4个典型多雨年和4个典型少雨年, 利用OLR资料对该地区旱涝年OLR场的时空分布规律及其低频振荡的传播特征进行了合成对比分析.结果表明, 东北旱涝与低纬OLR的分布及其变化密切相关, 特别是西北太平洋副热带高压、西太平洋ITCZ和印度ITCZ的位置和强度以及赤道中东太平洋OLR的距平在旱涝年均有显著差别, 并且热带和副热带OLR低频振荡的向北传播对东北地区夏季降水也有至关重要的影响.  相似文献   

17.
华西地区(25°N~35°N,100°E~110°E)是中国秋季降水主要地区之一。本文根据华西地区72站月平均降水资料、NCEP/NCAR再分析资料和哈德莱中心海温及海冰资料,利用相关和回归等分析方法研究了1961~2014年华西地区秋雨的年代际变率及其与大气环流和海温的关系。华西秋季降水年代际变率分解为呈现显著下降趋势的P1时段(1964~1998年)和呈现上升趋势的P2时段(1998~2014年)发现,对应P1时段降水下降趋势的华西区域大气位势高度异常场具有西正东负结构,大尺度环流场显示为从大西洋东传经北极巴伦支—喀拉海区至东亚的准纬向波列,该波列体现了上游负位相NAO(North Atlantic Oscillation)的调制作用。对于P2时段的降水上升趋势,其位势高度场配置与P1时段相反,而大尺度波列结构在欧亚大陆的部分呈西北—东南走向,且整体偏西,体现了上游正位相NAO的调制作用。这种环流结构导致华西区域西北侧形成负异常中心,有利于西南暖湿气流进入研究区域。影响华西秋雨趋势转折的海温关键区位于热带中东太平洋和热带印度洋。在P1时段,华西秋雨降水趋势与同期热带中东太平洋和印度洋海温呈显著正相关关系。而在P2时段,华西秋雨与前冬热带中东太平洋和印度洋海温存在显著负相关,前冬西北太平洋海温正异常也同时影响了华西秋雨的上升趋势。  相似文献   

18.
向外长波辐射与我国华北地区旱涝关系的初步研究   总被引:7,自引:0,他引:7       下载免费PDF全文
本文采用1974—1986年的向外长波辐射(OLR)和华北地区降水资料,对该地区旱、涝年的OLR场的时空分布特征进行了研究。分析指出,旱年与涝年的前冬和夏季在OLR距平场上呈相反的配置。同时发现,赤道中太平洋和海洋陆地上的OLR变化会影响华北旱涝的分布趋势,另外,谱分析计算结果指出,当存在准二年周期时,华北地区降水和赤道中太平洋地区的OLR之间有较高的凝聚值,呈正位相振荡。而且后者变化较前者超前大约法10个月。  相似文献   

19.
利用统计分析和CCM3数值模式研究了印度洋、南海和东南沿海同期海温异常对江淮梅雨的影响。统计分析结果表明:印度洋、南海和东南沿海的正 (负) 海温异常对应于江淮流域的多 (少) 雨。对OLR资料分析表明:当印度洋OLR为正 (负) 距平时, 江淮流域OLR也为正 (负) 距平, 但南海和东南沿海OLR多为负 (正) 距平。数值模拟结果表明:当印度洋为正海温异常时, 中高纬地区的阻高偏强, 江淮流域为多雨区; 印度洋为负海温异常时, 东亚沿海出现江淮流域旱年的环流形势, 与统计事实相符合。  相似文献   

20.
This paper investigates monthly and seasonal precipitation–temperature relationships (PTRs) over Northeast China using a method proposed in this study. The PTRs are influenced by clouds, latent and sensible heat conversion, precipitation type, etc. In summer, the influences of these factors on temperature decrease are different for various altitudes, latitudes, longitudes, and climate types. Stronger negative PTRs ranging from ?0.049 to ?0.075 °C/mm mostly occur in the semi-arid region, where the cold frontal-type precipitation dominates. In contrast, weaker negative PTRs ranging from ?0.004 to ?0.014 °C/mm mainly distribute in Liaoning Province, where rain is mainly orographic rain controlled by the warm and humid air of East Asian summer monsoon. In winter, surface temperature increases owing to the release of latent heat and sensible heat when precipitation occurs. The stronger positive PTRs ranging from 0.963 to 3.786 °C/mm mostly occur at high altitudes and latitudes due to more release of sensible heat. The enhanced atmospheric counter radiation by clouds is the major factor affecting increases of surface temperature in winter and decreases of surface temperature in summer when precipitation occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号