首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

2.
The purpose of this paper is to compare the differences between oceanside and bayside beaches. Field data on twelve beach process and response variables were gathered from February 1972 to April 1973 on four sample beaches at Sandy Hook Spit, New Jersey. Linear correlation is used to identify the most influential process variables and determine how the interrelationships among variables differ on each beach. The analysis confirms the importance of breaker height, wave steepness and wind direction on beach response. The correlation of beach processes with their associated responses are higher on the oceanside than on the bayside beaches, indicating that local, non-storm waves may be relatively insignificant in effecting substantial beach modification.Despite the greater magnitude of processes and beach change on the oceanside sites, erosion was more persistent on the bayside during the period of study. The frequent occurrence of short, steep erosional waves on the bayside prevented onshore movement of sediment between storms, resulting in a permanent loss of material from the beach face and dune. On the oceanside, long, low, depositional waves occurring between storms replenished most of the material carried away during the storm. This fresh beach material acted as a buffer against the erosion of the dunes during the following storm.The dominant bay waves are locally generated and may therefore be simulated using meteorological variables. However, the low wave energies on the bayside sites result in an increase in the relative importance of tidal currents, wind-induced currents, and refracted ocean swell. These factors complicate the application of simplified wave process—beach response models to the study of beaches exposed to these effects.  相似文献   

3.
Beach erosion and accretion occur across multiple time scales. Over long time scales (decades to millennia) the shoreface ravinement surface, which is recognized as a coarse lag deposit, forms at the shoreface toe as a result of wave- and current-induced erosion during shoreline transgression. Over short time scales (hours to days) the depth of sediment disturbance, which is recognized as coarse lamina and measured at the foreshore by devices and monitoring tracer beds, forms as a result of wave- and current-induced reworking during a tidal cycle. The maximum depth of erosion (MDOE), quantified here over 1 year, is modulated by processes that operate over a time scale that is between the drivers of short-term (e.g. tides and waves) and long-term (e.g. sea-level rise) beach erosion. The MDOE integrates the erosion that occurs over a discrete time interval and records the maximum depth of erosion that is likely principally induced by storms, which is difficult to quantify by other methods that rely on discrete observations (e.g. changes in elevation or movement of the mean high-water line). A novel technique for quantifying the MDOE, based on comparing the bedding and stratigraphy between cores collected at the same locations over a discrete time interval, is presented here and applied at Onslow Beach, NC, USA. This 12 km-long barrier island has irregular shoreline morphology, characterized by two embayments separated by a central headland. This shape is largely the result of variations in the depth of underlying rock strata and produces a steeper beachface at the headland than at the embayments. At each of the six sites examined along the barrier, the MDOE is found to increase from the backshore to the middle intertidal zone and is higher at the sites closer to the headland. These variations in the MDOE are likely due to the increase in average wave energy impacting the beachface from an offshore direction and steeper beaches (intermediate beach state) at the headland. Where the MDOE is within the beach facies, it is not associated with a coarsening, which is due to the heterolithic nature of the Onslow-beach strata. Where the MDOE is the contact between back-barrier and beach facies it is always associated with a coarsening and a gravel-rich lag deposit because in this case, the MDOE is an amalgamation of multiple erosional events, which is similar to the shoreface ravinement surface. Along-beach variation in the MDOE does not correspond with discrete observations of beach change over the same period and is likely a better indicator of erosion potential than long-term discrete observations, such as changes in surface elevation or the position of the mean high-water line.  相似文献   

4.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

5.
Low-frequency waves in the surf and swash zones on various beach slopes are discussed using numerical simulations. Simulated surface elevations of both primary waves and low-frequency waves across the surf zone were first compared with experimental data and good agreement found. Low-frequency wave characteristics are then discussed in terms of their physical nature and their relationship to the primary wave field on a series of sea bottom slopes. Unlike primary waves, low-frequency wave energy increases towards the shoreline. Low-frequency waves in the surf and swash are a function of incident waves and the sea bottom slope and hence the saturation level of the surf zone. Wave energy on a gently sloping beach is dominated by low-frequency waves while primary waves play a significant role on a steep beach. Low-frequency wave radiation from the surf zone on a given beach depends on primary wave frequency and beach slope. However, a very poor correlation was found between surf similarity parameter and low-frequency wave radiation.  相似文献   

6.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   

7.
海平面变化及其海岸响应   总被引:4,自引:0,他引:4  
第四纪气温的大幅度冷暖变化,导致全球海平面的变化,引起陆架海侵扣海退。海岸上的各种地貌如海滩、沙坝、三角洲扣陆架沙脊等响应海平面升降而发生新的演化扣变异。东海陆架古岸线、围绕古岸线发育的陆架沙脊、陆架深切河谷扣河谷充填沉积以及冰后期海进型扣海退型沙坝的形成乖演化等沉积事件都是响应海平面升降的结果。近百年来特别是近30年全球海平面普遍上升,引起风暴潮的频度扣幅度的增大。近岸波能增强,越滩浪增多,导致海滩侵蚀,岸线后退。Bruun法则扣其他一些模型能够说明海滩随海平面上升而蚀退的规律,但在预测速率时仍存在很多问题。使用时应注意海平面变化的区域性、海滩发育的滞后性和海滩蚀退因素间的权重关系。  相似文献   

8.
This study focuses on barred beach shoreface nourishments physically simulated in a wave flume. The attack of a schematic storm on three different nourishments is analysed. The apex and waning storm phases lead respectively to offshore and onshore sediment transports. Nourishments in the trough and on the outer bar feed the bar and increase wave dissipation offshore. The bar acts as a wave filter and reduces shore erosion (lee effect). In contrast, nourishment on the beach face leads mostly to shore feeding and reconstruction (feeder effect). With successive nourishments, the beach face clearly becomes steeper and onshore sediment transport is reduced during moderate wave climates. The surface grain size analysis reveals marked variations. Coarser sediments are sorted on the bar and the upper beach face. These locations correspond to large wave dissipation zones during the storm apex.  相似文献   

9.
波浪和潮汐作用下的海滩剖面动态变化过程是海岸演变及沿海防护工程设计与旅游资源规划的核心内容。本文以广西钦州湾沙井半岛人工海滩为研究区, 基于GPS-RTK采集的2018年1月—2019年12月的逐月剖面高程实测数据, 通过分析剖面冲淤和单宽体积变化, 利用EOF(Empirical Orthogonal Function)函数揭示剖面的高程变化模式, 进而探讨海滩剖面的动态演变过程。研究的主要结果表明: 1) 在观测期间, 人工海滩剖面的冲淤情况整体展现出冬春季淤积、夏秋季侵蚀的变化特征; 2) 人工海滩剖面因泥沙横向输移而导致不同横向分带的单宽体积变化趋势呈差异性, 不同横向分带具有侵蚀与淤积交替出现的情况; 3) 人工海滩剖面的变化模式可划分为由强降雨及台风导致剖面高程明显降低的主要模式、波潮影响下的剖面高程经历强降雨及台风后逐渐淤积和恢复的次要模式、波浪破碎形成卷流引起滩面冲淤变化的其他模式。  相似文献   

10.
本文通过波浪水槽试验研究了大糙率礁面影响下波浪沿礁的演化和爬高规律,测试了一系列规则波工况并对比了光滑礁面和粗糙礁面的情况。结果分析表明:二次谐波是礁坪上透射波的重要组成成分,粗糙礁面使主频波和二次谐波减小,对更高阶波的影响不显著;相对礁坪水深是描述礁坪上波浪透射的关键参数,礁面从光滑变为粗糙时海岸附近透射系数显著减小,能量衰减系数平均增大了8%,但礁前反射系数与礁面糙率之间无明显关系;礁后岸滩爬高随着透射波高的增大而增长,最后拟合了本文试验条件下珊瑚礁大糙率礁面预测规则波爬高的关系式。  相似文献   

11.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

12.
珊瑚礁海岸海滩和礁坪是海岸作用是活跃的部分,也是近几十年来与海岸发育,海岸侵蚀联系最密切的部分,这一部分高潮时被淹没,低潮时完全出露或大部分出露,使得在此进行地质填图成为可能,这样的地质图可以提供许多信息,如沉积物粒度分布规律,沉积物来源和搬运方向,海滩岩所指示的古海岸线位置,人类活动特别是海岸工程对沉积物分布的影响以及海岸线的变化过程和趋势,在礁坪上开挖的人工水道内测流,能够了解水流的性质以及是否有足够的速度搬运沉积物,从而了解人工水道对海岸的影响和预测海岸的状态,这些方法也可以用于大陆泥质和砂质第岸侵蚀的研究。  相似文献   

13.
Several levels of increasing complexity of transferring wave information from offshore to nearshore have been studied to quantify their influence on extreme beach erosion estimates. Beach profiles which have been monitored since 1976 were used to estimate extreme beach erosion and compared to predictions. Examination of the wave propagation assumptions revolves around two types of offshore to nearshore transfer: excluding or including wave breaking and bottom friction. A second complication is whether still water level variations (ocean tide plus storm surge) are included.The inclusion of various combinations of wave propagation processes other than shoaling and refraction in the wave transfer function changes on the extreme erosion distribution tail through lowering estimates above one year return period. This brings the predicted tails closer to the observations, but does not capture the upper limit of storm demand implied by the extensive beach profile data set. Including wave breaking has a marked effect on probabilistic estimates of beach erosion. The inclusion of bottom friction is less significant. The inclusion of still water level variability in the wave transfer calculation had minimal impact on results for the case study site, where waves were transferred from offshore to water at 20 m depth. These changes were put into perspective by comparing them to changes resulting from limiting beach erosion by adjusting the statistical distributions of peak wave height and storm duration to have maximum limits. We conclude that the proposed improvements on wave transformation methods are as significant as limiting wave erosion potential and worth including.  相似文献   

14.
New large-scale laboratory data are presented on the influence of long waves, bichromatic wave groups and random waves on sediment transport in the surf and swash zones. Physical model testing was performed in the large-scale CIEM wave flume at UPC, Barcelona, as part of the SUSCO (swash zone response under grouping storm conditions) experiment in the Hydralab III program (Vicinanza et al., 2010). Fourteen different wave conditions were used, encompassing monochromatic waves, bichromatic wave groups and random waves. The experiments were designed specifically to compare variations in beach profile evolution between monochromatic waves and unsteady waves with the same mean energy flux. Each test commenced with approximately the same initial profile. The monochromatic conditions were perturbed with free long waves, and then subsequently substituted with bichromatic wave groups with different bandwidth and with random waves with varying groupiness. Beach profile measurements were made at half-hourly and hourly intervals, from which net cross-shore transport rates were calculated for the different wave conditions. Pairs of experiments with slightly different bandwidth or wave grouping show very similar net cross-shore sediment transport patterns, giving high confidence to the data set. Consistent with recent small-scale experiments, the data clearly show that in comparison to monochromatic conditions the bichromatic wave groups reduce onshore transport during accretive conditions and increase offshore transport during erosive conditions. The random waves have a similar influence to the bichromatic wave groups, promoting offshore transport, in comparison to the monochromatic conditions. The data also indicate that the free long waves promote onshore transport, but the conclusions are more tentative as a result of a few errors in the test schedule and modifications to the setup which reduced testing time. The experiments suggest that the inclusion of long wave and wave group sediment transport is important for improved near-shore morphological modeling of cross-shore beach profile evolution, and they provide a very comprehensive and controlled series of tests for evaluating numerical models. It is suggested that the large change in the beach response between monochromatic conditions and wave group conditions is a result of the increased significant and maximum wave heights in the wave groups, as much as the presence of the forced and free long waves induced by the groupiness. The equilibrium state model concept can provide a heuristic explanation of the influence of the wave groups on the bulk beach profile response if their effective relative fall velocity is larger than that of monochromatic waves with the same incident energy flux.  相似文献   

15.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

16.
Energy harvesting using piezoelectric materials can be realised by periodic external force. Piezoelectric material directly converts strain energy into electric power to capture a wasted ambient kinetic energy. This recovered energy can be used for operating wireless sensors, such as those found in environmental monitoring, mechanical sensing and structural diagnostic. In our previous work, a flexible piezoelectric device, FPED, was proposed and developed as an energy harvester for generating electric power from flow-induced vibration in ocean and wind environments. In this study a FPED with a painted piezoelectric layer, highly durable in order to withstand extreme bending and weathering caused by waves and currents, is proposed and developed by spray coating for use as an ocean energy harvester. A numerical method is developed to predict electro-fluid–structure interactions and to evaluate electrical performance and mechanical behaviours of the painted FPED. Additionally, validation of the numerical model is provided through several experimental tests. This study also investigates the relationship between the stiffness of the painted FPED and the vibrated frequency, as well as determining their influence on the electrical performance. Finally, the outcomes from a field test, conducted in real ocean space, is presented to provide information on electrical performance, mechanical behaviours and durability of painted FPEDs. The paper shows that a painted FPED is a useful and robust energy harvester for generating electric power from harsh environments.  相似文献   

17.
利用涌浪影响下短时段内的冲流带滩面高频高程数据和碎波带波流资料,在奇异谱分析(SSA)的基础上,以比研究了不同形态滩面的冲淤变化趋势、趋势分布形状、冲淤变化周期和冲淤变化强度,以及同一条剖面不同桩点间各因素间的变化关系;用交叉谱方法探索了每分钟滩面高频冲淤变化与碎波带长重力波间的作用关系.分析结果表明,滩角韵律地形引起的冲流分流作用促进了滩脊向滩谷的泥沙转运,冲流带滩面存在明显的长重力波频段的周期性冲淤振动,滩面冲淤振动强度由滩面下部向上部递减,碎波带长重力波对滩面高频冲淤变化起重要作用.  相似文献   

18.
Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digging reef rock close to the edge of the wide ocean reef flat without surface loose sediments on it or sand beach can be accepted. Excavating sand from some depths in lagoon is a scientific approach particularly important for urbanized atolls. However, selecting appropriate sites for mining sand other than at some depths in lagoon is suitable to rural islands without dense populations. These sites include up drift side of long groin on the reef flat,partly filled access channel-port, outlet of artificial channel and lagoon margin on the prograding coast.  相似文献   

19.
—Based on theoretical analysis.numerical calculation.and experimental study,this paper dis-cusses breaker indices of irregular waves.transformation of wave spectrum.characteristics and computa-tion of breaking waves.as well as the critical beach slope under which waves will not break.Computed re-sults are in good agreement with laboratory physical model test data and ocean wave field measurements.  相似文献   

20.
Forecasting of ocean wave heights, with warning time of a few hours or days, is necessary in planning many operation-related activities in the ocean. Such information is currently derived by numerically solving the differential equation representing wave energy balance. The solution procedure involved is extremely complex and calls for very large amounts of meteorological and oceanographic data. This paper presents a complementary and simple method to make a point forecast of waves in real time sense based on the current observation of waves at a site. It incorporates the technique of neural networks. The network involved is first trained by different algorithms and then used to forecast waves with lead times varying from 3 to 24 h. The results of different training algorithms are compared with each other. The neural output is further compared with the statistical AR models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号