首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 111 毫秒
1.
目前在地震滑坡影响因素的研究中,一般认为岩性、地形地貌、坡度、地震烈度、震中距等因素对滑坡的空间分布有重要的影响作用,忽视了发震断裂的运动方式对滑坡分布所起作用.5.12汶川地震诱发的大量滑坡崩塌灾害主要沿龙门山断裂带发育,但在断裂带两侧呈不对称分布,80%以上的滑坡、特大型滑坡主要分布于断裂带的上盘.这一现象在汶川地...  相似文献   

2.
Newmark方法在芦山地震诱发滑坡分布预测研究中的应用   总被引:9,自引:2,他引:7  
对于地震滑坡灾害而言,进行地震滑坡危险区划是降低损失的有效手段之一.因此,地震滑坡危险性预测方法的研究成为这一领域的热点.2013年4月20日芦山地震诱发了大量的滑坡崩塌,造成了严重的人员伤亡和社会经济财产损失.文中通过对地震灾区震后航片、遥感影像等的解译,初步获得此次地震诱发滑坡的分布概况.在芦山地震灾区的地形和岩性分析的基础上,基于Newmark物理平衡模型,对该区的潜在地震滑坡危险区进行了分析预测,通过对比本研究获得的潜在滑坡区域预测结果与解译的滑坡分布情况,表明Newmark模型是一种有效的地震诱发滑坡预测分析方法.进一步探讨了不同滑坡影响范围估算方法的差异,认为震级与产生滑坡最远距离之间的关系是一种较好的估算方法.  相似文献   

3.
越来越多的地震滑坡相对于地震断层的不对称分布震例让人们意识到断层上盘效应的存在。 然而,目前有关断裂运动方式与滑坡空间分布关系的研究还不够充分和深入。在收集大量地震滑坡震例资料并获得其分布规律的基础上,建立了一个简化的断层模型,以地震波在地表与断层面之间反射传播特性为基础,探讨断层倾角改变对地表地震动强度的影响。进而,以汶川地震触发的大型滑坡为例,研究了断层的几何特征和运动方式对诱发滑坡空间分布的影响。结果表明,断层的倾角对滑坡空间分布范围具有控制作用,随着倾角的增加,垂直断层走向的滑坡分布范围逐渐减小;并且,大型滑坡的初始坡面受到断裂运动方向的影响,与断裂运动方向一致的坡面更容易发生滑坡。所获结果不仅有助于提高区域性地震滑坡危险区域的预测精度,而且对认识大型滑坡的滑动机制、主控因素以及可能的滑动规模、滑距等也起到促进作用。通过对滑坡崩塌的认识来辅助提高对地质构造、地震断层等的认识,应是地震诱发滑坡崩塌研究的新的意义所在。  相似文献   

4.
汶川地震滑坡与影响因素   总被引:2,自引:0,他引:2  
通过结合对汶川地震Ⅶ~Ⅺ烈度区内30 000多平方公里的研究区内中大型滑坡遥感解译,利用地震烈度分区、发震断裂展布等影响因素构建了多个GIS图层,分析了地震滑坡的空间分布与影响因素的相关关系,建立了基于GIS手段的最临近程度方法地震滑坡危险性分析模型。研究表明:⑴整体和每一类型的滑坡频度都随着地震烈度而指数增加,而且面积在10 000~100 000 m2的地震滑坡在各个烈度区都是发生频度最大的;⑵地震滑坡在距离发震断裂较近的地方更为集中,但是在垂直和平行于发震断裂的两个方向上地震滑坡频度的衰减是不相同的,垂直方向较平行方向衰减更快;⑶地震滑坡主要发生在25°~40°坡度范围;⑷地震滑坡主要发生在1.0~1.5 km高程内,约占研究区内滑坡总数量的42%;⑸地震滑坡主要集中在东、东南和南三个方向,约占地震滑坡总数的一半。通过最临近程度方法进行建模对研究区地震滑坡进行危险性分析,结果与实际情况基本相符。  相似文献   

5.
为获得详细的地震滑坡数据和分布特征,揭示黄土地震滑坡的成灾模式和防治措施,需要对黄土地区地震滑坡进行详细的编录,利用卫星影像的识别方法是重要的手段之一。通过总结黄土地震滑坡特有的空间分布特征、平面形态特征、地震滑坡发育特征和伴生水文特征,归纳利用卫星影像识别黄土地震滑坡的7种识别标志。利用该方法,研究通渭地区黄土地震滑坡的空间分布与规律,结果表明:黄土地震滑坡卫星影像识别方法获得的滑坡与野外现场调查结果相近;通渭地区滑坡拥有缓坡发育、低角度、中远滑距、大体积、方向性明显等特点。  相似文献   

6.
地震滑坡是大陆内部山区一种最为常见的地震次生灾害类型。本论文基于Arc GIS平台开发了地震滑坡危险性快速评估模块,实现震后1 h内地震滑坡危险性的评估,为震后应急求援提供一定的决策依据。本论文选取地震烈度、坡度、坡向、高程、水系距和断裂距6个参数作为地震滑坡影响因子,通过对历史地震滑坡数据进行统计分析,确定影响因子的分级量化标准,在GIS平台对影响因子数据进行一系列的数据处理,完成影响因子的量化赋值。采用层次分析法,确立各个影响因子的权重,并建立地震滑坡危险性评估数学模型。在此基础上,基于Arc GIS平台开发了地震滑坡危险性快速评估模块,可在震后1 h内获得评价区的地震滑坡危险性分布的公里网格数据。最后,以2013年四川省芦山县7.0级地震对评估模型进行了验证。结果表明,评估结果与实际滑坡点的分布基本符合,基于GIS的地震滑坡易发性快速评估模型是可靠的。  相似文献   

7.
如何预测地震滑坡道路可通行性空间分布是快速评估中的一个难题,为解决这一问题,本文提出一种基于MDT的地震滑坡道路可通行性空间分布快速评估方法。该方法包括3个步骤:①定制路段单元,将路段作为地震滑坡道路可通行性评估的基本单元,利用GIS将评估区内的道路划分成路段,制作每条路段两侧180m的缓冲区;②对路段进行地震滑坡属性赋值,统计各缓冲区范围内不同地震滑坡敏感性水平的像元数量,将统计结果作为对应路段的地震滑坡属性;③路段可通行性空间分布推断,利用MDT模型计算道路可通行性,最后进行地震滑坡道路可通行性空间分布制图。利用该方法对我国2008年汶川MS8.0、2014年鲁甸MS6.5和2012年彝良MS5.6、MS5.7地震灾区进行研究。其中,汶川地震灾区用来进行地震滑坡道路可通行性空间分布快速评估方法的建立和方法有效性的评价,鲁甸地震灾区和彝良地震灾区则用来对所建立方法在相似区域可移植性的评价。通过计算P值来检验模型的统计学显著性,并通过计算kappa值来评价模型反演结果与实际情况的一致性。结果表明模型计算出的道路可通行性是判断地震灾区道路是否因地震滑坡中断的良好指标;在允许一定误差的情况下,利用MDT模型进行地震滑坡道路可通行性空间分布快速评估的方法可以移植到其他相似区域。  相似文献   

8.
1920年海原地区发生的一次8.5级大地震,诱发了大量的滑坡灾害。据野外调查和航片判读资料分析了海原地震滑坡形成的基本条件,探讨了影响海原地震滑坡分布的主要因素。研究结果对滑坡灾害的预测有一定意义。  相似文献   

9.
通过对甘肃中东部大量地震滑坡的成灾机制分析,按形成时代将滑坡分为新滑坡、老滑坡和古滑坡;按物质组成、滑体厚度及滑床位置又可分为浅层黄土滑坡和深层切层滑坡。该地区地震滑坡的主要危险来自新滑坡和浅层黄土滑坡,滑坡成灾机制复杂,与许多因素有关。地震滑坡主要特征是成灾时间短,规模大;灾害持续时间长、反复性大;易引发次生灾害。预防地震滑坡是防震减灾工作中的一项重要任务。  相似文献   

10.
历史地震与滑坡灾害   总被引:3,自引:0,他引:3  
通过对我国中强地震诱发滑坡或产生次生灾害的实例的研究,认为,地震作用是诱发滑坡灾害的重要因素之一。提出加强中强地震史料的发掘和研究,进行地震诱发滑坡、古滑坡或古地震的考察,是历史地震工作者在新形势下服务于国民经济建设、拓宽社会服务领域的重要方向之一。  相似文献   

11.
川滇地震滑坡分布规律探讨   总被引:5,自引:0,他引:5  
乔建平  蒲晓虹 《地震研究》1992,15(4):411-417
本文主要从宏观角度讨论了川滇地区地震滑坡的空间分布格局与环境条件的关系。地震滑坡灾害在空间上可分为四种不同程度的地区。地震滑坡不但受到地震强度、频度的控制,而且与各震区所处的环境条件密切相关。川滇地区的滑坡生成环境可分成三类。在这些环境因素的制约下,形成了自北而南地震滑坡灾害逐渐递降的发育趋势。从时间分布的讨论中可见,川滇地震滑坡自1870—1976年的百年内为高潮期。  相似文献   

12.
As documented in history, an M6¼ earthquake occurred between Qianjiang, Chongqing and Xianfeng, Hubei(also named the Daluba event)in 1856. This earthquake caused serious geological hazards, including a lot of landslides at Xiaonanhai, Wangdahai, Zhangshangjie and other places. Among them, the Xiaonanhai landslide is a gigantic one, which buried a village and blocked the river, creating a quake lake that has been preserved to this day. As the Xiaonanhai landslide is a historical earthquake-induced landslide, it is impossible to obtain the remote sensing image and DEM data before the earthquake, which brings certain difficulties to the estimation of landslide volume and the establishment of numerical simulation model. In this paper, the original topography before the earthquake is inferred by the methods of geomorphic analogy in adjacent areas and numerical simulation, and the volume of the Xiaonanhai landslide body is calculated. Firstly, the principle and application of UAV aerial photography are introduced. We employed an unmanned airplane to take pictures of the Xiaonanhai landslide and adjacent areas, yielding high-precision DOM images(digital orthophoto graph)and DEM data which permit generating terrain contours with a 25m interval. We also used the method of intensive manual depth measurement in waters to obtain the DEM data of bottom topography of Xiaonanhai quake lake. Based on field investigations, and combining terrain contours and DOM images, we described the sizes and forms of each slump mass in detail. Secondly, considering that the internal and external dynamic geological processes of shaping landforms in the same place are basically the same, the landforms such as ridges and valleys are also basically similar. Therefore, combining with the surrounding topography and landform of the Xiaonanhai area, we used MATLAB software to reconstruct two possible original landform models before the landslide. The original topography presented by model A is a relatively gentle slope, with a slope of 40°~50°, and the original topography presented by model B is a very high and steep slope, with a slope of 70°~80°. Thirdly, Geostudio software is used to conduct numerical simulation analysis on the slope stability. The safety factor of slope stability and the scale of landslide are analyzed under the conditions of static stability, seismic dynamic response and seismic dynamic response considering topographic amplification effect. The results show that large landslide is more likely to occur in model B, which is more consistent with the reality. In order to verify the credibility of recovered DEM data of valley bottom topography, we visited the government of Qianjiang District, collected the drilling data of 11 boreholes in two survey lines of Xiaonanhai weir dam. It is verified that the recovered valley bottom elevation is basically consistent with that revealed by the borehole data. Finally, according to the two kinds of topographic data before and after the landslide, the volume of the landslide is calculated by using the filling and excavation analysis function of ArcGIS software. There is a gap between the calculation results of filling and excavation, the filling data is 3×106m3 larger than the excavation data. The reasons are mainly as follows: 1)Due to the disorderly accumulation of collapse blocks, the porosity of the accumulation body became larger, causing the volume of the fill to expand; 2)It has been more than 150a since the Xiaonanhai earthquake, and the landslide accumulation has been seriously reconstructed, therefore, there are some errors in the filling data; 3)The accumulation body in Xiaonanhai quake lake might be subject to erosion and siltation, this may affect the accuracy of the filling data. In conclusion, it is considered that the calculated results of the excavation are relatively reliable, with a volume of 4.3×107m3.  相似文献   

13.
试论地震海啸的成因   总被引:1,自引:0,他引:1       下载免费PDF全文
经统计与研究,多数地震是不引发海啸的,故地震与海啸不存在直接的因果关系。这是因为引发地震海啸(特别是大的地震海啸)的直接原因,主要是海底地震所造成的次生的巨大体积的海底滑坡和崩塌,而不是海底地震时海底地面的同震错断与变形。因此,若未来震中附近存在不稳定海底滑坡和崩塌体,只要发生地震,不论震级大小与震源深浅,也不论震源类型(即倾滑或走滑)都可引起海底滑坡和崩塌,进而引发海啸。若未来震中附近不存在不稳定海底滑坡和崩塌体,再大震级的地震,即使是倾滑型地震也不能引发海啸  相似文献   

14.
At present, with the wide application of the Newmark method, various Newmark empirical formulas with different ground motion parameters have been fitted by many researchers based on global strong-motion records. However, the existing study about the Wenchuan earthquake does not quantitatively evaluate the applicability of different Newmark models based on the actual landslides distribution. The aim of this paper is to present a comparison between observed landslides from the 2008 Wenchuan earthquake and predicted landslides using Newmark displacement method based on different ground motion parameters. The factor-of-safety map and critical acceleration(ac)map in the study area are obtained by using the terrain data and geological data. The distribution of Arias intensity(Ia)and PGA in the study area is obtained by using the attenuation formulas of Arias intensity(Ia)and PGA, which is regressed by Wenchuan ground motion records. Based on the distribution of Arias intensity(Ia)and PGA parameters, we obtained the predicted locations of landslide using Newmark regression equations which are generated using global strong-motion records. The results shows that the assessment results can better reflect the macroscopic distribution characteristics of co-seismic landslides, most predicted landslide cells are distributed on the two sides of the Beichuan-Yingxiu Fault, especially the Pengguan complex rock mass in the hanging wall. The abilities to predict landslide occurrence of the two Newmark simplified models are different. On the whole, the evaluated result of simplified model based on parameter Ia is better than that based on PGA parameter. The GFC values obtained by the Newmark model of Ia and PGA parameters are 65.7% and 34.9%respectively. The evaluated result based on Ia can better reflect the macro distribution of coseismic landslides. The Ls_Pred value based on the Newmark model of parameter Ia is 26.5%, and the Ls_Pred value based on the Newmark model of PGA parameter is 10.3%. However the total area of predicted landslides accounts for 2.4% of the study area, which indicates that the predicted landslide cells are greater than the observed landslide cells. This reminds us that depending on the current input of shear strength and ground-motion parameters, we can only conduct landslide hazard assessment in macro areas, the ability to predict landslide can be improved using more accurate topographic data and input parameters.  相似文献   

15.
A complete understanding to the disasters triggered by giant earthquakes is not only crucial to effectively evaluating the reliability of existing earthquake magnitude, but also supporting the seismic hazard assessment. The great historical earthquake with estimated magnitude of M8.5 in Huaxian County on the 23rd January 1556, which caused a death toll of more than 830 000, is the most serious earthquake on the global record. But for a long time, the knowledge about the hazards of this earthquake has been limited to areas along the causative Huashan piedmont fault(HSPF) and within the Weihe Basin. In this paper, we made a study on earthquake triggered landslides of the 1556 event along but not limited to the HSPF. Using the high-resolution satellite imagery of Google Earth for earthquake-triggered landslide interpretation, we obtained two dense loess landslides areas generated by the 1556 earthquake, which are located at the east end and west end of the HSPF. The number of the interpreted landslides is 1 515 in the west area(WA), which is near to the macro-epicentre, and 2 049 in the east area(EA), respectively. Based on the empirical relationship between the landslide volume and area, we get the estimated landslide volume of 2.85~6.40km3 of WA and EA, which is equivalent or bigger than the value of ~2.8km3 caused by Wenchuan earthquake of MW7.9 on 12th May 2008. These earthquake triggered landslides are the main cause for the death of inhabitants living in houses or loess house caves located outside of the basin, such as Weinan, Lintong, Lantian(affected by WA) and Lingbao(affected by EA). Our results can help deeply understand the distribution characteristics of coseismic disaster of the 1556 Huaxian earthquake to the south of Weihe Basin, and also provide important reference for the modification of the isoseismals.  相似文献   

16.
On August 3, 2014, an MW6.5 earthquake occurred in Ludian County, Yunnan Province, which triggered significant landslides and caused serious ground damages and casualties. Compared with the existing events of earthquake-triggered landslides, the spatial distribution of co-seismic landslides during the Ludian earthquake showed a special pattern. The relationship between the co-seismic landslides and the epicenter or the known faults is not obvious, and the maximum landslide density doesn't appear in the area near the epicenter. Peak ground acceleration (PGA), which usually is used to judge the limit boundary of co-seismic landslide distribution, cannot explain this distribution pattern. Instead of correlating geological and topographic factors with the co-seismic landslide distribution pattern, this study focuses on analyzing the influence of seismic landslide susceptibility on the co-seismic distribution. Seismic landslide susceptibility comes from a calculation of critical acceleration values using a simplified Newmark block model analysis and represents slope stability under seismic loading. Both DEM (SRTM 90m)and geological map (1 ︰ 200000)are used as inputs to calculate critical acceleration values. Results show that the most susceptible slopes with the smallest critical accelerations are generally concentrated along the banks of rivers. The stable slopes, which have the larger critical accelerations and are comparably stable, are in the places adjacent to the epicenter. Comparison of the distribution of slope stability and the real landslides triggered by the 2014 MW6.1 Ludian earthquake shows a good spatial correlation, meaning seismic landslide susceptibility controls the co-seismic landslide distributions to a certain degree. Moreover, our study provides a plausible explanation on the special distribution pattern of Ludian earthquake triggered landslides. Also the paper discusses the advantages of using the seismic landslide susceptibility as a basic map, which will offer an additional tool that can be used to assist in post-disaster response activities as well as seismic landslides hazards zonation.  相似文献   

17.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. The main aim of this paper is to present the use of remote sensing images, GIS technology and Logistic Regression(LR)model for earthquake triggered landslide hazard mapping related to the 2017 Jiuzhaigou earthquake. On the basis of a scene post-earthquake Geoeye-1 satellite image(0.5m resolution), we delineated 4834 co-seismic landslides with an area of 9.63km2. The ten factors were selected as the influencing factors for earthquake triggered landslide hazard mapping of Jiuzhaigou earthquake, including elevation, slope angle, aspect, horizontal distance to fault, vertical distance to fault, distance to epicenter, distance to roads, distance to rivers, TPI index, and lithology. Both landsliding and non-landsliding samples were needed for LR model. Centroids of the 4834 initial landslide polygons were extracted for landslide samples and the 4832 non-landslide points were randomly selected from the landslide-free area. All samples(4834 landslide sites and 4832 non-landslide sites)were randomly divided into the training set(6767 samples)and validation set(2899 samples). The logistic regression model was used to carry out the landslide hazard assessment of the Jiuzhaigou earthquake and the results show that the landslide hazard assessment map based on LR model is very consistent with the actual landslide distribution. The areas of Wuhuahai-Xiamo, Huohuahai and Inter Continental Hotel of Jiuzhai-Ruyiba are high hazard areas. In order to quantitatively evaluate the prediction results, the trained model calculated with the training set was evaluated by training set and validation set as the input of the model to get the output results of the two sets. The ROC curve was used to evaluate the accuracy of the model. The ROC curve for LR model was drawn and the AUC values were calculated. The evaluation result shows good prediction accuracy. The AUC values for the training and validation data set are 0.91 and 0.89, respectively. On the whole, more than 78.5% of the landslides in the study area are concentrated in the high and extremely high hazard zones. Landslide point density and landslide area density increase very rapidly as the level of hazard increases. This paper provides a scientific reference for earthquake landslides, disaster prevention and mitigation in the earthquake area.  相似文献   

18.
地震诱发滑坡的危险性分析与预测   总被引:1,自引:0,他引:1  
徐桂弘 《内陆地震》2008,22(2):188-192
结合地震滑坡的特点和相关文献研究,介绍了地震力的分析方法、地震滑坡的机理、地震危险性分析的方法、地震活动性参数的确定方法以及场点地震危险性概率计算原则。将两种地震诱发滑坡预测结果进行对比,分析结果表明,地震滑坡危险区主要集中在中国西部地区(川、滇、甘、陕、新疆等省区)及中国台湾地区,随预测年限的增加场地的地震滑坡危险性也随之增高,地震崩塌滑坡的危险区域明显加大。  相似文献   

19.
GPS单历元定位新算法用于滑坡监测di   总被引:2,自引:0,他引:2       下载免费PDF全文
在滑坡变形较大时,常规GPS静态观测方式满足不了滑坡实时监测的需要. 本文结合滑坡变形的特点,利用GPS单历元定位新方法frac34;单历元阻尼LAMBDA方法,对滑坡实时形变进行了监测试验. 该方法不需要考虑GPS载波相位测量中棘手的周跳问题,每一历元即可搜索到正确的整周模糊度,从而获得监测点厘米级精度的坐标. 采用平滑方法后可以分辨出毫米级精度的坐标和滑动速度,扩大了GPS形变监测的应用范围. 本文简要介绍了新方法的原理,并使用低价位的单频GPS接收机,在江西省一个实测滑坡中取得了较好的应用效果.    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号