首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The long term hydrological response of a medium-sized mountainous catchment to climate changes has been examined, The climate changes were represented by a set of hypothetical scenarios of temperature increases coupled with precipitation and potential evapotranspiration changes. Snow accumulation and ablation, plus runoff from the study catchment (the Mesochora catchment in central Greece) were simulated under present (historical) and altered climate conditions using the US National Weather Service snowmelt and soil moisture accounting models. The results of this research obtained through alternative scenarios suggest strongly that all the hypothetical climate change scenarios would cause major decreases in winter snow accumulation and hence increases in winter runoff, as well as decreases in spring and summer runoff. The simulated changes in annual runoff were minor compared with the changes in the monthly distribution of runoff. Attendant changes in the monthly distribution of soil moisture and actual evapotranspiration would also occur. Such hydrological results would have significant implications on future water resources design and management.  相似文献   

2.
Abstract

The runoff regime of glacierized headwater catchments in the Alps is essentially characterized by snow and ice melt. High Alpine drainage basins influence distant downstream catchments of the Rhine River basin. In particular, during the summer months, low-flow conditions are probable with strongly reduced snow and ice melt under climate change conditions. This study attempts to quantify present and future contributions from snow and ice melt to summer runoff at different spatial scales. For the small Silvretta catchment (103 km2) in the Swiss Alps, with a glacierization of 7%, the HBV model and the glacio-hydrological model GERM are applied for calculating future runoff based on different regional climate scenarios. We evaluate the importance of snow and ice melt in the runoff regime. Comparison of the models indicates that the HBV model strongly overestimates the future contribution of glacier melt to runoff, as glaciers are considered as static components. Furthermore, we provide estimates of the current meltwater contribution of glaciers for several catchments downstream on the River Rhine during the month of August. Snow and ice melt processes have a significant direct impact on summer runoff, not only for high mountain catchments, but also for large transboundary basins. A future shift in the hydrological regime and the disappearance of glaciers might favour low-flow conditions during summer along the Rhine.

Citation Junghans, N., Cullmann, J. & Huss, M. (2011) Evaluating the effect of snow and ice melt in an Alpine headwater catchment and further downstream in the River Rhine. Hydrol. Sci. J. 56(6), 981–993.  相似文献   

3.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

4.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

5.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

6.
Abstract

The hydrological regime of a mountainous catchment, in this instance the Mesochora catchment in Central Greece, was simulated for altered climates resulting when using the Goddard Institute for Space Studies (GISS) model for carbon dioxide doubling. The catchment snow water equivalent was predicted on the basis of the snow accumulation and ablation model of the US National Weather Service River Forecast System (NWSRFS), while the catchment runoff, as well as actual evapotranspiration and soil moisture storages, were simulated through application of the soil moisture accounting model of NWSRFS. Two scenarios of monthly climate change were drawn from the GISS model, one associated with temperature and precipitation changes, while the other referred to temperature changes alone. A third hypothetical scenario with temperature and precipitation changes similar to those corresponding to the mean monthly GISS scenarios was used to test the sensitivity of the monthly climate change of the hypothetical case on catchment hydrology. All three scenarios projected decreases in average snow accumulations and in spring and summer runoff and soil moisture, as well as increases in winter runoff and soil moisture storage and spring evapotranspiration.  相似文献   

7.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

8.
《水文科学杂志》2013,58(1):100-111
Abstract

The runoff of Iceland has been evaluated for the period 1961–1990, and changes in runoff from then to the period 2071–2100 predicted according to a future projection of climate change. The hydrological model WASIM-ETH was used, with meteorological data from the PSU/NCAR MM5 numerical weather model. The evaluation of the effects of climate change on water resources was based on a future climate simulation from the HIRHAM regional climate model with boundary conditions from the HadAM3H global climate model using A2 and B2 emissions scenarios. Future runoff was shown to become much higher in 2071–2100 compared to 1961–1990, predominantly due to increased glacial melt caused by increased temperature. Furthermore, changes in runoff seasonality would be substantial. Thus, according to this projection there could be great changes in hydropower production potential associated with climate change in Iceland.  相似文献   

9.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

10.
Abstract

A semi-distributed hydrological model and reservoir optimization algorithm are used to evaluate the potential impacts of climate change on existing and proposed reservoirs in the Sonora River Basin, Mexico. Inter-annual climatic variability, a bimodal precipitation regime and climate change uncertainties present challenges to water resource management in the region. Hydrological assessments are conducted for three meteorological products during a historical period and a future climate change scenario. Historical (1990–2000) and future (2031–2040) projections were derived from a mesoscale model forced with boundary conditions from a general circulation model under a high emissions scenario. The results reveal significantly higher precipitation, reservoir inflows, elevations and releases in the future relative to historical simulations. Furthermore, hydrological seasonality might be altered with a shift toward earlier water supply during the North American monsoon. The proposed infrastructure would have a limited ability to ameliorate future conditions, with more benefits in a tributary with lower flood hazard. These projections of the impacts of climate change and its interaction with infrastructure should be of interest to water resources managers in arid and semi-arid regions.
Editor D. Koutsoyiannis  相似文献   

11.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

12.
Abstract

The global climate change may have serious impacts on the frequency, magnitude, location and duration of hydrological extremes. Changed hydrological extremes will have important implications on the design of future hydraulic structures, flood-plain development, and water resource management. This study assesses the potential impact of a changed climate on the timing and magnitude of hydrological extremes in a densely populated and urbanized river basin in southwestern Ontario, Canada. An ensemble of future climate scenarios is developed using a weather generating algorithm, linked with GCM outputs. These climate scenarios are then transformed into basin runoff by a semi-distributed hydrological model of the study area. The results show that future maximum river flows in the study area will be less extreme and more variable in terms of magnitude, and more irregular in terms of seasonal occurrence, than they are at present. Low flows may become less extreme and variable in terms of magnitude, and more irregular in terms of seasonal occurrence. According to the evaluated scenarios, climate change may have favourable impacts on the distribution of hydrological extremes in the study area.  相似文献   

13.
ABSTRACT

The impact of climate change on runoff characteristics is investigated for the Upper Tisza basin, in eastern Central Europe. For a reliable estimation of uncertainty, an appropriate stochastic weather generator is embedded into a Monte Carlo cycle capable of generating any large number of independent, equally probable, 100-year-long daily sequences of synthetic data with which a hydrological model is driven in order to obtain the hydrological responses to the meteorological data sequences. According to our results, a decrease of daily average runoff is likely to occur in the future in the Upper Tisza basin, especially in July and August. The occurrence of water levels below the critical low level is estimated to increase between July and October. Level-3 flood warnings are projected to be less frequent in the future; however, they will tend to be more severe than in the historical period.  相似文献   

14.
Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall-to-precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p < 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p < 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.  相似文献   

15.
ABSTRACT

Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

16.
Abstract

Basin characteristics are central to the regionalization of hydrological parameters and, in particular, runoff. Two examples are provided which demonstrate that Geographical Information Systems (GIS) can supply such characteristics at a national level, assuming that the necessary base data are available. These methods offer great potential for coordination and open new horizons for regional hydrology. The experience gained by the Swiss National Hydrological and Geological Survey is used to demonstrate the advantages which accrue from the flexibility of the application of GIS at regional and national levels.  相似文献   

17.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

18.
In recent years, the natural hydrology behaviors were greatly influenced by climate change. The relation between runoff and climate change are always the core of scientific hydrological study in arid region. This paper presents a multi-variate time series controlled auto-regressive (CAR) model based on hydrological and climatic data of typical tributaries Jinghe River in Ebinur Lake Basin of Xinjiang covering the period from 1957 to 2012. The aim is to study the climate change and its effects on runoff of the Jinghe River, Northwest China. The results showed the following: the runoff of the Jinghe River was unevenly distributed and has obvious seasonal changes throughout the year. It was concentrated in summer and has along dry season with less runoff. The monthly maximum river runoff was from June to September and accounted for 74% of annual runoff. The river runoff increased since the 1980s till the 1990s; in the 21st century there was a trend of decreasing. The oscillatory period of annual runoff series in the Jinghe River Basin was 21a and 13a, and these periods were more obvious, followed by 32a and 9a. The oscillation with a time scale of 21a and 13a was a fulltimed domain. The MRE is 6.54%, the MAE is 0.84 × 108 m3, and the RMSE is 0.039. The CAR model passed the F-test and residual test, and the change trend of calculated and measured values of annual runoff is consistence, which means that the model was reasonable.  相似文献   

19.
Abstract

The development of historical water resources in the South Asian subcontinent has been largely dependent on the hydrological background. The runoff patterns are derived from climate statistics and the historical developments in different areas are related to these patterns.

Citation Sutcliffe, J., Shaw, J. & Brown, E. (2011) Historical water resources in South Asia: the hydrological background. Hydrol. Sci. J. 56(5), 775–788.  相似文献   

20.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号