首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

2.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

3.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

4.
Abstract

Evaporation in the Upper Harz experimental basins is computed and compared to the values calculated according to formulae. Potential evaporation is determined for mean daily and monthly values by different methods. For the computation of the terms generally lacking in water balance studies, such as actual evaporation and changes in snow and soil storage, a model was established on the basis of daily values. As a result water balances can also be drawn up for shorter periods such as single years or months.  相似文献   

5.
Abstract

Estimating groundwater recharge is essential to ensure the sustainable use of groundwater resources, particularly in arid and semi-arid regions. Soil water balances have been frequently advocated as valuable tools to estimate groundwater recharge. This article compares the performance of three soil water balance models (Hydrobal, Visual Balan v2.0 and Thornthwaite) in the Ventós-Castellar aquifer, Spain. The models were used to simulate wet and dry years. Recharge estimates were transformed into water table fluctuations by means of a lumped groundwater model. These, in turn, were calibrated against piezometric data. Overall, the Hydrobal model shows the best fit between observed and calculated levels (r2 = 0.84), highlighting the role of soil moisture and vegetation in recharge processes.

Editor D. Koutsoyiannis; Associate editor X. Chen

Citation Touhami, I., et al., 2014. Comparative performance of soil water balance models in computing semi-arid aquifer recharge. Hydrological Sciences Journal, 59 (1), 193–203.  相似文献   

6.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

7.
Abstract

Modelling of the rainfall–runoff transformation process and routing of river flows in the Kilombero River basin and its five sub-catchments within the Rufiji River basin in Tanzania was undertaken using three system (black-box) models—a simple linear model, a linear perturbation model and a linear varying gain factor model—in their linear transfer function forms. A lumped conceptual model—the soil moisture accounting and routing model—was also applied to the sub-catchments and the basin. The HEC-HMS model, which is a distributed model, was applied only to the entire Kilombero River basin. River discharge, rainfall and potential evaporation data were used as inputs to the appropriate models and it was observed that sometimes the system models performed better than complex hydrological models, especially in large catchments, illustrating the usefulness of using simple black-box models in datascarce situations.  相似文献   

8.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

9.
Abstract

We conducted a PUB (predictions in ungauged basins) experiment looking at hydrology and crop dynamics in the semi-arid rural Mod catchment in India. The experiment was motivated by the aims (a) to develop a coupled eco-hydrological model capable of analysing land-use strategies concerning crop water need, erosion protection, crop yield and resistivity against droughts and floods, and (b) to assess the feasibility of a strategy for collecting the necessary data in a data-scarce region. Our experiment combines parsimonious data assessment and eco-hydrological model coupling at the lower mesoscale. Linking bottom-up sampling of functionally representative soil classes and top-down regionalization based on spectral properties of the same resulted in a comprehensive distributed data basis for the model. A clear focus on the dominating processes and the catena as the organizing landscape element in the given environmental setting enabled this. We employed the WASA (Water Availability in Semi-Arid environments) model for uncalibrated process-based water balance modelling and integrated a crop simulation subroutine based on the SWAP (Soil Water Atmosphere Plant) model to account for crop dynamics, feedbacks and yield estimation. While we found the data assessment strategy and the hydrological model application largely feasible, in terms of its accounting for scale, processes and model concepts, the simulation of feedbacks with crops was problematic. Contributing to the PUB issue, more general conclusions are drawn concerning spatially-distributed structural information and uncalibrated modelling.
Editor Z.W. Kundzewicz; Associate editor F. Hattermann  相似文献   

10.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

11.
A seasonal water budget analysis was carried out to quantify various components of the hydrological cycle using the Soil and Water Assessment Tool (SWAT) model for the Betwa River basin (43?500 km2) in central India. The model results were satisfactory in calibration and validation. The seasonal water budget analysis showed that about 90% of annual rainfall and 97% of annual runoff occurred in the monsoon season. A seasonal linear trend analysis was carried out to detect trends in the water balance components of the basin for the period 1973–2001. In the monsoon season, an increasing trend in rainfall and a decreasing trend in ET were observed; this resulted in an increasing trend in groundwater storage and surface runoff. The winter season followed almost the same pattern. A decreasing trend was observed in summer season rainfall. The study evokes the need for conservation structures in the study area to reduce monsoon runoff and conserve it for basin requirements in water-scarce seasons.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR F. Hattermann  相似文献   

12.
Abstract

The Hilhorst model was used to convert bulk electrical conductivity (σb) to pore water electrical conductivity (σp) under laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and σb. In the present study, applying the linear relationship εbσb to data obtained from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that regression. We were able to derive an accurate offset of the relationship εb–σb and to estimate the evolution of σp over time by including a stochastic component to the linear model, rearranging it to a time-varying dynamic linear model (DLM), and using Kalman filtering and smoothing. The offset proved to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature along the soil profile.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

13.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

14.
Abstract

Based on the water balance model LARSIM (Large Area Simulation Model), a model for the simulation of nitrogen transport was developed in a mesoscale catchment in southwest Germany. To meet the needs and constraints in river basin management, the nitrogen model was developed following the concept of minimum information requirement (MIR). The modelling concept uses only few calibration parameters and only easily accessible input data. Water balance, runoff generation and nitrogen transport were simulated on a 1-km2 grid of sub-areas in which different land-use classes and soil characteristics were accounted. Temporal variability of the storage of mobile nitrogen were described using a monthly based mass balance. Nitrogen mobilization and transport was simulated using monthly values of different runoff components and data for soil properties, topography, hydrogeology and river network. The simulation was calibrated and validated using streamflow from two gauging stations and observed nitrogen concentrations at the catchment outlet, showing reasonable results for both streamflow and nitrogen dynamics. The results of the model application are discussed in the context of uncertainty problems and their implications for water management.  相似文献   

15.
Abstract

Condensed layers do not only affect the water balance of the soil but they also promote soil erosion to a high degree due to acheive limited capability of absorbing water.

In the course of the essian land consolidation soils are being ameliorated among other measures by blowing up, loosening and deep ploughing. By destroying the impermeable layers the water balance will be improved and further soil erosion will be avoided as well.

The procedures that have been used and the results received up to now will be explained.  相似文献   

16.
Abstract

The problem of non-steady flow of water in a soil-plant system can be described by adding a sink term to the continuity equation for soil water flow. In this paper the sink term is defined in two different ways. Firstly it is considered to be dependent on the hydraulic conductivity of the soil, on the difference in pressure head between the soil and the root-soil interface and some root effectiveness function. Secondly the sink is taken to be a prescribed function of the soil water content. The partial differential equation applying to the first problem is solved by both a finite difference (FD 1) and a finite element (FE 1) technique, that applying to the second problem by a finite difference approach (FD 2). The purpose of this paper is to verify the numerical models against field measurements, to compare the results obtained by the three numerical methods and to show how the finite element method can be applied to complex but realistic two-dimensional flow situations. Two examples are given. The first concerns one-dimensional flow and it compares numerical results with those obtained experimentally in the field from water balance studies on red cabbage (Brassica oleracea L. ‘Rode Herfst’) grown on a clay soil in the presence of a water table. The second example describes two-dimensional flow in a complex field situation in the Netherlands where flow takes place under cropped field conditions through five anisotropic layers. Water is supplied to the system by infiltration from two unlined ditches and is withdrawn from the system by evapotranspiration and by leakage to an underlying pumped aquifer.  相似文献   

17.
Abstract

A snowmelt runoff model is derived for relatively small rivers. The model involves the main components of the catchment water budget, physiographical and some other factors: water equivalent of snow cover, precipitation, antecedent moisture content, daily snowmelt, non-uniformity of snow cover, retention capacity of the basin, and percentage of forest area. The model structure includes calculations of the daily values of snowmelt excess and the transformation of these values into discharges at the outlet of the basin based on meteorological observations and appropriate distribution functions. Both calculations are made separately for open and forest areas. The parameters of the model were derived by optimization methods. The linear model based on the superposition principle is used to transform the discharges of a small river into total inflow into a large reservoir. The combined model was used to forecast for five days in advance daily mean inflows into the Gorky and Kuibyshev reservoirs (on the River Volga), using the observed and forecast discharges of the small rivers as input.  相似文献   

18.
Abstract

Plant root systems can utilize soil water to depths of 10 m or more. Spatial pattern data of deep soil water content (SWC) at the regional scale are scarce due to the labour and time constraints of field measurements. We measured gravimetric deep SWC (DSWC) at depths of 200, 300, 400, 500, 600, 800 and 1000 cm at 382 sites across the Loess Plateau, China. The coefficient of variation was high for soil water content (SWC) in the horizontal direction (48%), but was relatively small for SWC in the vertical direction (9%). Semivariogram ranges for DSWC at different depths were between 198 and 609 km. Kriged distribution maps indicated that deep soil layers became moister along northwest to southeast transects. Multiple statistical analyses related DSWC to plant characteristics (e.g. plant age explained >21% of the variability), geographical location and altitude (8–13%), soil texture and infiltrability, evaporation zone and eco-hydrological processes (P < 0.05). Regional land management decisions can be based on our DSWC distribution data to determine land uses and plant species appropriate for the soil type and location that would maintain a stable soil water balance. Maintaining infiltrability is of great importance in this and other water-scarce regions of the world.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Wang, Y.Q., Shao, M.A., Liu, Z.P. and Warrington, D.N., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281.  相似文献   

19.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   

20.
ABSTRACT

A local water balance is determined with the aid of measurements of changes in water content and water potential in the unsaturated zone of soil. For purposes of clarification first the basic laws which state the flow physics in the unsaturated zone are briefiy discussed; thereafter some technical aspects of the field measurement of water content and water potential are presented.

Finally these techniques are illustrated by an example of the local water balance determined for a basin with data taken over ten months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号