首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Abstract

Discharge in the Warta River in Poland has been analysed based on long series of measurements at the Gorzów Wielkopolski gauge station (covering the whole catchment area) and at Poznań (middle and upper catchment area), and the Note? River is characterized by the gauge station at Nowe Drezdenko. The annual mean discharge of the Warta River for the period 1981–2010 was equal to the average value for the last 163 years (209 m3 s-1), and there was no significant change in comparison with the ratio of runoff in the summer and winter half-years. In the driest region of Poland, the climate has been described on the basis of precipitation and air temperature. The annual mean precipitation for 1981–2010 (544 mm) in the Warta River catchment area was the same as that for the period 1848–2010. The precipitation has been increasing in spring and winter, and decreasing in summer. There is a positive and very significant correlation (r = 0.705) between the annual discharge and annual precipitation totals. The annual mean air temperature has risen by 0.6°C between the periods 1848–1980 and 1981–2010.
Editor D. Koutsoyiannis

Citation Ilnicki, P., Farat, R., Górecki, K., and Lewandowski, P., 2014. Impact of climatic change on river discharge in the driest region of Poland. Hydrological Sciences Journal, 59 (6), 1117–1134. http://dx.doi.org/10.1080/02626667.2013.831979  相似文献   

2.
ABSTRACT

The spatial-temporal variation of runoff in an inland basin is very sensitive to climate change. Investigation of runoff change in arid areas is typically limited by lack of meteorological and hydrogeological data. This study focused on runoff change in the Yarkand River source area of the Tarim Basin, China, with the aim of analysing the influence of climate change on the response characteristics of discharge. Sensitivity analysis was introduced to reflect the degree of influence of climate on runoff. Based on the sensitivity factors, over 30 sets of schemes including the IPCC Fourth Assessment Report were simulated using the MIKE 11/NAM rainfall–runoff model and the response of runoff was analysed. The results indicate that there are significant correlations and synchronous fluctuations between runoff and precipitation, evaporation and temperature. The characteristics of the sensitivity of runoff can be fitted well by Bi-Gaussian functions. The functions show that high sensitivity indexes mainly appear in the interval of 165 ± 100 m3 s-1. The influence of precipitation on runoff is greater than that of other climate factors. Through simulation using the NAM model, we found that change of annual runoff was related to the initial climate condition. Annual runoff will have an increasing trend if it has a strong sensitivity to the initial meteorological condition. Moreover, the runoff decreases linearly with evaporation. Also it has a positive relationship with temperature and precipitation. Across the four seasons, the impact in summer and winter is greater than that in spring and autumn. Estimation of the spatial-temporal influence of climate on runoff could provide insight for water resource development in arid areas.
Editor Z.W. Kundzewicz Associate editor not assigned  相似文献   

3.
ABSTRACT

Runoff generation and dynamics is an important issue in watershed and water resource management. Taking the Aksu River as a typical inland river, the spatial and temporal variations of δ18O and δD of the river water and its sources component pattern were investigated from May 2012 to May 2013. The results showed the following three main findings. Firstly, we analysed the runoff generation and mechanism over a longer time-scale in two tributaries of the Aksu River. Secondly, 46–54% of the runoff in the Aksu River was derived from groundwater, 31–36% from glacier meltwater, 5–8.8% from snow meltwater and 10% from precipitation. The third major finding was the significant inconsistency of the climate change impact on water resources. Specifically, our results showed that the Toxkan River is recharged by more glacier meltwater (36%), and responds to sensitive temperature changes. Autumn runoff is more sensitive to changes of precipitation and temperature.
Editor Z.W. Kundzewicz Associate editor Not assigned  相似文献   

4.
Abstract

Hydrological data of a drained tropical peat catchment have been analysed through conventional quantitative hydrological approaches to characterize its hydrological behaviours and changes due to continuous drainage for a long period. The results show that the hydrology of the catchment is extremely dynamic and the catchment is flashy in nature. A decreasing trend in peak flow amount and an increasing trend in baseflow amount was observed in the catchment, indicating that continuous drainage has reduced the risk of both flooding and water scarcity in the catchment. Correlation analysis among rainfall, runoff and groundwater table reveals that saturation excess-near surface flow is the dominant mechanism responsible for rapid runoff generation in the catchment. Therefore, any physical alterations or disturbances to the upper part of the peat profile would definitely affect the overall hydrological behaviour of the peat catchment.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Katimon, A., Shahid, S., Abd Wahab, A.K., and Ali, M.H., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. Part 1: Rainfall, runoff and water table relationships. Hydrological Sciences Journal, 58 (6), 1297–1309.  相似文献   

5.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

6.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

7.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   

8.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

9.
Abstract

Abstract Monthly precipitation and temperature trends of 51 stations in the Yangtze basin from 1950–2002 were analysed and interpolated. The Mann-Kendall trend test was applied to examine the monthly precipitation and temperature data. Significant positive and negative trends at the 90, 95 and 99% significance levels were detected. The monthly mean temperature, precipitation, summer precipitation and monthly mean runoff at Yichang, Hankou and Datong stations were analysed. The results indicate that spatial distribution of precipitation and temperature trends is different. The middle and lower Yangtze basin is dominated by upward precipitation trend but by somewhat downward temperature trend; while downward precipitation trend and upward temperature trend occur in the upper Yangtze basin. This is because increasing precipitation leads to increasing cloud coverage and, hence, results in decreasing ground surface temperature. Average monthly precipitation and temperature analysis for the upper, middle and lower Yangtze basin, respectively, further corroborate this viewpoint. Analysis of precipitation trend for these three regions and of runoff trends for the Yichang, Hankou and Datong stations indicated that runoff trends respond well to the precipitation trends. Historical flood trend analysis also shows that floods in the middle and lower Yangtze basin are in upward trend. The above findings indicate that the middle and lower Yangtze basin is likely to face more serious flood disasters. The research results help in further understanding the influence of climatic changes on floods in the Yangtze basin, providing scientific background for the flood control activities in large catchments in Asia.  相似文献   

10.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   

11.
Abstract

A one-dimensional water quantity and quality mathematical model was developed to evaluate the effects of joint gate–pump operation in terms of water withdrawal for pollutant flushing. The study was carried out in dry seasons in the Foshan River channel, China. The results indicate that the input of freshwater into the upper and middle reaches of the Foshan River can improve the water quality of the lower reaches. However, the backwater effect due to water diversion in the middle reaches of the river can greatly offset the cleaning processes in the upper reaches of the Foshan River. The results indicate that water quality in the upper Foshan River (Jiebian) may degrade with an increase in the rate of water withdrawal from the middle river when the discharge pumped from the upper Foshan River is less than 10m3/s; optimal water quality improvement is obtained with discharge values of 30 and 20 m3/s, respectively, at the upper and middle reaches of the Foshan River.

Editor D. Koutsoyiannis

Citation Liu, C.-L., Jiang, T., Zhang, Q., Zhu, S. and Li, K., 2012. Modelling of water withdrawal for pollutant flushing in the tidal river network, Pearl River Delta, China. Hydrological Sciences Journal, 57 (3), 576–590.  相似文献   

12.
ABSTRACT

Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

13.
Abstract

The objectives of this work are: (a) to statistically test and quantify the decreasing trends of streamflow and sediment discharge of the Yellow River in China during 1950–2005, (b) to identify change points or transition years of the decreasing trends, and (c) to diagnose whether the decreasing trends were caused by precipitation changes or human intervention, or both. The results show that significant decreasing trends in annual streamflow and sediment discharge have existed since the late 1950s at three stations located in the upper, middle, and lower reaches of the Yellow River (P?=?0.01). Change-point analyses further revealed that transition years existed and that rapid decline in streamflow and sediment discharge began in 1985 in most parts of the basin (P?=?0.05). Adoption of conservation measures in the 1980s and 1990s corroborates the identified transition years. Double-mass curves of precipitation vs streamflow (sediment) for the periods before and after the transition years show remarkable decreases in proportionality of streamflow (sediment) generation. All percentiles of streamflow and sediment discharge after the transition years showed rapid reduction. In the absence of significantly decreasing precipitation trends, it is concluded that the decreasing trends were very likely caused by human intervention. Relative to the period before the transition, human intervention during 1985–2005 reduced cumulative streamflow by 13.5, 14.3 and 24.6% and cumulative sediment discharge by 29.0, 24.8 and 26.5%, at Toudaoguai, Huayuankou and Lijin, respectively, showing the quantitative conservation effect in the basin.

Citation Gao, P., Zhang, X.-C., Mu, X.-M., Wang, F., Li, R. & Zhang, X. (2010) Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950–2005. Hydrol. Sci. J. 55(2), 275–285.  相似文献   

14.
Abstract

Pakistan has suffered a devastating flood disaster in 2010. In the Kabul River basin (92 605 km2), large-scale riverine and flash floods caused destructive damage with more than 1100 casualties. This study analysed rainfall–runoff and inundation in the Kabul River basin with a newly developed model that simulates the processes of rainfall–runoff and inundation simultaneously based on two-dimensional diffusion wave equations. The simulation results showed a good agreement with an inundation map produced based on MODIS for large-scale riverine flooding. In addition, the simulation identified flash flood-affected areas, which were confirmed to be severely damaged based on a housing damage distribution map. Since the model is designed to be used even immediately after a disaster, it can be a useful tool for analysing large-scale flooding and to provide supplemental information to agencies for relief operations.

Editor Z.W. Kundzewicz

Citation Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S. and Fukami, K., 2012. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal, 57 (2), 298–312.  相似文献   

15.
Abstract

Abstract The Shiyang River basin is a typical interior river basin that faces water shortage and environmental deterioration in the arid northwest of China. Due to its arid climate, limited water resources and some inappropriate water-related human activities, the area has developed serious loss of vegetation, and gradual soil salinization and desertification, which have greatly impeded the sustainable development of agriculture and life in this region. In this paper, the impacts of human activities on the water–soil environment in Shiyang River basin are analysed in terms of precipitation, runoff in branches of the river, inflow into lower reaches, water conveyance efficiency of the canal system and irrigation water use efficiency in the field, replenishment and exploitation of groundwater resources, soil salinization, vegetation cover and the speed of desertification. The results show that human activities and global climate change have no significant influence on the precipitation, but the total annual runoff in eight branch rivers showed a significant decrease over the years. The proportion of water use in the upper and middle reaches compared to the lower reach was increased from 1:0.57 in the 1960s, to 1:0.27 in the 1970s and 1:0.09 in the 1990s. A reduction of about 74% in the river inflow to the lower reaches and a 15-m drop in the groundwater table have occurred during the last four decades. Strategies for improving the water–soil environment of the basin, such as the protection of the water resources of the Qilian Mountains, sustainable use of water resources, maintenance of the balance between land and water resources, development of water-saving agriculture, diverting of water from other rivers and control of soil desertification, are proposed. The objective of this paper is to provide guidelines for reconstruction of the sustainable water management and development of agriculture in this region.  相似文献   

16.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.

Editor Z.W. Kundzewicz; Associate editor C.-Y. Xu

Citation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335.  相似文献   

18.
Abstract

The spatial distribution and trends in the frequency of precipitation extremes over the last 44 years (1960–2003), especially since 1990, have been analysed using daily precipitation data from 147 stations in the Yangtze River basin. The research results are as follows: (1) The 15 mm precipitation isohyet approximately divides the precipitation extremes (corresponding to the 95th percentile) of the stations in the middle and lower Yangtze reaches (higher) from those of the upper Yangtze reaches (lower). Also the starting time of the precipitation extremes in the middle and lower Yangtze reaches is earlier than of those in the upper Yangtze reaches. Precipitation extremes are concentrated mostly in June in the middle and lower Yangtze reaches, and July in the upper Yangtze reaches. (2) During the period 1960–2003, the first two decades had fewer precipitation extremes than the last two decades. There have been significant increasing trends and step changes in frequency of annual total precipitation extremes and precipitation extremes with a 1–5 day gap in the middle and lower Yangtze reaches. Precipitation extremes occur more frequently in shorter periods, separated by a few days. Precipitation extremes are also becoming more concentrated in the month with the highest frequency of extremes (June) in the middle and lower Yangtze reaches. In the upper Yangtze reaches, there is an upward tendency of extreme events in June. Increasing precipitation extremes in June for both the middle and lower, and the upper Yangtze reaches will increase the probability of flooding if the observed trends of the last 40 years continue into the future.  相似文献   

19.
《水文科学杂志》2012,57(2):227-241
ABSTRACT

The study addresses homogeneity testing of annual discharge time series for eight hydrological stations and five annual climate time series for one weather station in the Kupa River Basin, between Slovenia and Croatia, and global annual average surface temperature time series for the period 1961–2010. The standard normal homogeneity test (SNHT) was used to detect both abrupt and gradual linear trend homogeneity breaks. The results reveal natural change points at the beginning of the 1980s. Absolute homogeneity testing of average annual weather station-level air pressure, annual precipitation, differences between precipitation totals and potential evapotranspiration and surface runoff from the independent observation time series confirmed an abrupt shift, also at the beginning of the 1980s. The trend of local air temperature for 1985–2000, which partly coincides with global surface temperature trend for 1974–2005, strengthened the river discharge regime shift since the beginning of the 1980s. These results could improve climate variation monitoring and estimation of the impact of climate variation on the environment in the area. Generally, an indication of climate regime change points and an assessment of their duration could provide significant benefits for the society.  相似文献   

20.
Abstract

Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号