首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Many intra and extra problems occurred due to unsustainable human use of natural resources leading to increasing sediment loads in the watersheds.However,few studies have been comprehensively conducted in progressing countries to prioritize sediment sources from different points of views,particularly in some countries like Iran where such valuable information is essential for proper watershed resources management.The present study was therefore planned to assess the importance of potential sediment sources viz.,spatial sources(geologic units) and source types(land use units) in sediment yield in Idelo watershed as one of the important sub-watersheds of Sefidrood large Watershed in Zanjan Province,Iran,using composite fingerprinting.In addition,the results of the sediment fingerprinting approach were compared with those of field measurement data obtained from studying soil erosion types(viz.,sheet,rill and gully erosion).Toward this attempt,16 tracers were detected in different geologic units and land uses and the sediment yielded at the watershed outlet.The results showed that the composite fingerprints of the different geologic units comprising As,N,Cu,Zn,OC and Co tracers could correctly distinguish 86% of the sediment source samples.The red gypsiferous marl contributed 85 percent in sediment yield.In regard to source types,the optimum composite fingerprint encompassed only N and Cu and provided a discriminatory efficiency of 90%.Besides that,the rangelands with 48.8% study area coverage had a significant contribution of 88% in sediment yield.The field measurements confirmed the reliability of results of fingerprinting approach in apportioning watershed scale sediment sources on the base of consistency of the two sets of results.It was also understood from the results,besides successful applicability of composite fingerprinting in assessing the provenance of the sediment yielded at the watershed outlet that the geologic formations and land use types played different roles in sediment yield.Such information helps managers and decision makers to properly regulate appropriate and adaptive management approaches in the study watershed.  相似文献   

2.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
An understanding of the temporal variation in reservoir sedimentation and identification of the main sources of sediment are necessary for the maintenance of sustainable reservoirs. For this purpose, field measurements, sampling, and fingerprinting of reservoir sediment were undertaken from July 2005 to November 2007. Source fingerprinting of reservoir sediment was conducted using cesium‐137 (137Cs). The relative contributions of gully bank and forest road, and forest floor material to reservoir sediment were calculated using a mixing model. Bank and forest road material, estimated to make up about 96% of the reservoir sediment, was the dominant source. Enormous reservoir sedimentation, which amounted to about 60% of the total reservoir sedimentation during the observation period, occurred during a heavy rainstorm with an 80‐year recurrence time. To maintain the sustainability of the reservoir in this study, therefore, temporal and spatial preparation strategies for heavy rainstorms and bank and forest road erosion should be considered. However, spatial information on sediment sources from 137Cs fingerprinting is limited. To better identify the sediment sources spatially and temporally, further studies applying soil erosion models and more detailed field studies are needed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land‐based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank‐erosion measurements, sediment budget and other methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

6.
Abstract

Gully erosion is considered to be one of the most important soil erosion processes in Mediterranean marly environments, but its actual contribution to total soil loss is still under discussion. The objectives of this paper are: (a) to acquire the distributed value of erosion rate in a permanent gully developed on a marly substratum in a Mediterranean environment; and (b) to quantify the key factors responsible for the spatial and temporal differences in erosion rates observed within the gully. A permanent gully located in Cap Bon (northeastern Tunisia) has been intensively and regularly monitored over a 7-year period with electronic survey equipment (total station) to give five field topographic surveys, as well as hydrological measurements at the gully outlet. The net soil loss for the 7-year period comprised a denudation of 51 m3 of sediment on the gully bank slopes, which corresponds to a mean soil loss of 61 m3 ha?1 year?1 or 6.1 mm year?1. Denudation was observed on bed units with a slope gradient greater than 20%, while the remainder showed deposition. By confirming the factors involved in gully evolution, and by refining the statistical link between factors and erosion rates within the gully, the results provide important information to predict gully erosion rates in Mediterranean marly environments.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation El Khalili, A., Raclot, D., Habaieb, H., and Lamachère, J.M., 2013. Factors and processes of permanent gully evolution in a Mediterranean marly environment (Cape Bon, Tunisia). Hydrological Sciences Journal, 58 (7), 1519–1531.  相似文献   

7.
1 INTRODUCTION Soil erosion at the hilly-gully region of the Loess Plateau has obvious vertical erosion zones from watershed boundary to gully edge, i.e., sheet erosion-dominated zone, rill erosion-dominated zone and shallow gully erosion-dominated zone, from top to bottom (Chen et al., 1988). Meanwhile, upslope runoff and sediment have a significant impact on the downslope erosion process. But with the limits of research methods,there is not much data to quantify upslope runoff and sedi…  相似文献   

8.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Soil‐mantled landscapes subjected to rainfall, runoff events, and downstream base level adjustments will erode and evolve in time and space. Yet the precise mechanisms for soil erosion also will vary, and such variations may not be adequately captured by soil erosion prediction technology. This study sought to monitor erosion processes within an experimental landscape filled with packed homogenous soil, which was exogenically forced by rainfall and base level adjustments, and to define the temporal and spatial variation of the erosion regimes. Close‐range photogrammetry and terrain analysis were employed as the primary methods to discriminate these erosion regimes. Results show that (1) four distinct erosion regimes can be identified (raindrop impact, sheet flow, rill, and gully), and these regimes conformed to an expected trajectory of landscape evolution; (2) as the landscape evolved, the erosion regimes varied in areal coverage and in relative contribution to total sediment efflux measured at the outlet of the catchment; and (3) the sheet flow and rill erosion regimes dominated the contributions to total soil loss. Disaggregating the soil erosion processes greatly facilitated identifying and mapping each regime in time and space. Such information has important implications for improving soil erosion prediction technology, for assessing landscape degradation by soil erosion, for mapping regions vulnerable to future erosion, and for mitigating soil losses and managing soil resources. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Long‐term erosion monitoring data in the Ethiopian highlands are only available from the Soil Conservation Research Program (SCRP) watersheds including the Anjeni watershed. The 113 ha Anjeni watershed was established in 1984 and fanya juu terraces were installed in 1986. Runoff and erosion data are available from three different plot sizes and at the watershed outlet. The objective of this study was to investigate how erosion processes and sediment rating parameters vary with plot size and the progression of the rainy monsoon phase. We analyzed runoff and sediment loss data from 40 plots and the watershed outlet. The dataset included erosion data from 24 newly constructed plots (3 m length) during the rainy monsoon phase of 2012 and 2013, and 16 long‐term plots (with 12, 16, 22, and 24% slopes and 3, 15 and 30 m lengths) and the watershed outlet during the period between 1986 to 1990. Sediment concentration (C) was fitted to runoff (Q) using a power regression equation (C = aQb). Sediment concentration and yield increased with increasing plot length from 3 m to 15 m, but sediment yield decreased as plot length increased to 30 m.The coefficients (a and b) were affected by plot size and the progression of the rainy monsoon phase. As plot size increases, the a value increased, while the b value decreased. Greater a values were observed during the beginning of the monsoon phase, while values of b were greater towards the end of the monsoon phase. Overall findings suggest that erosion from cultivated fields is primarily controlled by transport limitations at the beginning of the monsoon phase, while towards the end of the monsoon phase, as surface covers emerge, sediment availability will be reduced, and thus sediment source would be a limitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Knowledge of soil loss rates by water erosion under given climate, soil, topography, and management conditions is important for establishing soil conservation schemes. In Galicia, a region with Atlantic climatic conditions in Spain, field observations over the last decade indicate that interrill, rill and ephemeral gully erosion may be an important sediment source. The aim of this work was to assess concentrated erosion rates, describe types of rills and ephemeral gullies and determine their origin, evolution and importance as sediment sources. Soil surface state and concentrated flow erosion were surveyed on medium textured soils, developed over basic schists of the Ordenes Complex series (Coruña province, Spain) from 1997 to 2006. Soil surface state was characterized by crust development, tillage features and roughness degree. Soil erosion rate was directly measured in the field. Concentrated flow erosion took place mainly on seedbeds and recently tilled surfaces in late spring and by autumn or early winter. During the study period, erosion rates were highly variable and the following situations could be distinguished: (a) no incision or limited rill incision, i.e. below 2 Mg ha?1 year?1; (b) generalized rill and ephemeral gully incision in the class of mean values between 2·5 and 6·25 Mg ha?1 year?1, this was the most common erosion pattern; and (c) heavy erosion as observed during an extremely wet winter period, between October 2000 and February 2001, with erosion figures that may be about ten orders of magnitude higher, up to 55–60 Mg ha?1 year?1. Therefore, low values of soil losses are dominant, but also large values of rill and ephemeral gully erosion occurred during the study period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Peatlands are an important store of soil carbon, and play a vital role in global carbon cycling, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. Large areas of the UK's blanket peat are significantly degraded and actively eroding which negatively impacts carbon and pollutant storage. The restoration of eroding UK peatlands is a major conservation concern, and over the last decade measures have been taken to try to control erosion and restore large areas of degraded peat. This study utilizes a sediment source fingerprinting approach to assess the effect of restoration practices on sediment production, and carbon and pollutant export in the Peak District National Park, southern Pennines (UK). Suspended sediment was collected using time integrated mass flux samplers (TIMS), deployed across three field areas which represent the surface conditions exhibited through an erosion–restoration cycle: (i) intact; (ii) actively eroding; and (iii) recently re‐vegetated. Anthropogenic pollutants stored near the peat's surface have allowed material mobilized by sheet erosion to be distinguished from sediment eroded from gully walls. Re‐vegetation of eroding gully systems is most effective at stabilizing interfluve surfaces, switching the locus of sediment production from contaminated surface peat to relatively ‘clean’ gully walls. The stabilization of eroding surfaces reduces particulate organic carbon (POC) and lead (Pb) fluxes by two orders of magnitude, to levels comparable with those of an intact peatland, thus maintaining this important carbon and pollutant store. The re‐vegetation of gully floors also plays a key role in decoupling eroding surfaces from the fluvial system, and further reducing the flux of material. These findings indicate that the restoration practices have been effective over a relatively short timescale, and will help target and refine future restoration initiatives. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Use of fallout radionuclides as indicators of erosion processes   总被引:1,自引:0,他引:1  
The different depth penetration characteristics of 137Cs, 7Be and 210Pb excess in undisturbed soils can be used to identify erosion processes by analysis of sediments derived from surface erosion. Caesium-137 concentrations (half-life 30 years) typically decrease to half the surface value at between 30 and 50 mm. Beryllium-7 (half-life 53 days) has half-penetration depths of between 0.7 and 10 mm, whereas 210Pb excess (half-life 20.2 years) has half-penetration depths between 10 and 30 mm. Experiments designed to determine the applicability of these depth penetration characteristics to soil erosion studies are reported. Surface runoff was artificially generated at two locations in a grazed paddock using a rainfall simulator. Suspended sediment was extracted from runoff and analysed for natural and artificial gamma emitting radio-nuclides. Suspended sediment derived from sheet flow contained initially high values of 137Cs, 7Be and 210Pb excess. As the experiment continued 137Cs concentrations remained high, but 7Be and 210Pb excess value decreased with time. This is interpreted as indicating a change from sheet dominated erosion to rill dominated erosion. During a second experiment artificial rain was allowed to fall onto an eroded gully wall. The derived suspended sediment contained no detectable 137Cs, 7Be or 210Pb excess. Overland flow from above the gully wall was then allowed to run down the gully face and mix with the water falling directly onto the gully wall. There was no detectable change in the radionuclide signature, showing that the gully wall was the predominant source of sediment. This was tested independently by mass balance and 226Ra to 232Th ratios. The good correlation between 210Pb excess and 7Be at this site suggests that the differential technique described here may be applicable over time-scales longer than are possible with 7Be. It may therefore be practical to examine catchment erosion history through analysis of 210Pb excess and 137Cs in sediment cores.  相似文献   

15.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

16.
RUSLE2 (Revised Universal Soil Loss Equation) is the most recent in the family of Universal Soil Loss Equation (USLE)/RUSLE/RUSLE2 models proven to provide robust estimates of average annual sheet and rill erosion from a wide range of land use, soil, and climatic conditions. RUSLE2's capabilities have been expanded over earlier versions using methods of estimating time‐varying runoff and process‐based sediment transport routines so that it can estimate sediment transport/deposition/delivery on complex hillslopes. In this report we propose and evaluate a method of predicting a series of representative runoff events whose sizes, durations, and timings are estimated from information already in the RUSLE2 database. The methods were derived from analysis of 30‐year simulations using a widely accepted climate generator and runoff model and were validated against additional independent simulations not used in developing the index events, as well as against long‐term measured monthly rainfall/runoff sets. Comparison of measured and RUSLE2‐predicted monthly runoff suggested that the procedures outlined may underestimate plot‐scale runoff during periods of the year with greater than average rainfall intensity, and a modification to improve predictions was developed. In order to illustrate the potential of coupling RUSLE2 with a process‐based channel erosion model, the resulting set of representative storms was used as an input to the channel routines used in Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) to calculate ephemeral gully erosion. The method was applied to a hypothetical 5‐ha field cropped to cotton in Marshall County, MS, bisected by a potential ephemeral gully having channel slopes ranging from 0·5 to 5% and with hillslopes on both sides of the channel with 5% steepness and 22·1 m length. Results showed the representative storm sequence produced reasonable results in CREAMS indicating that ephemeral gully erosion may be of the same order of magnitude as sheet and rill erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Mathematical models developed for quantification of sediment transport in hydrological watersheds require data collected through field or laboratory experiments, but these are still very rare in the literature. This study aims to collect such data at the laboratory scale. To this end, a rainfall simulator equipped with nozzles to spray rainfall was constructed, together with an erosion flume that can be given longitudinal and lateral slopes. Eighty experiments were performed, considering microtopographical features by pre-forming a rill on the soil surface before the start of each experiment. Medium and fine sands were used as soil, and four rainfall intensities (45, 65, 85 and 105 mm h-1) were applied in the experiments. Rainfall characteristics such as uniformity, granulometry, drop velocity and kinetic energy were evaluated; flow and sediment discharge data were collected and analysed. The analysis shows that the sediment transport rate is directly proportional to rainfall intensity and slope. In contrast, the volumetric sediment concentration stays constant and does not change with rainfall intensity unless the slope changes. These conclusions are restricted to the conditions of experiments performed under rainfall intensities between and 105 mm h-1 for medium and fine sands in a 136-cm-wide, 650-cm-long and 17-cm-deep erosion flume with longitudinal and lateral slopes varying between 5 and 20%.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation Aksoy, H., Unal, N.E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci, S.B., Eris, E., and Pak, G., 2013. Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58 (7), 1505–1518.  相似文献   

18.
PHYSICALPROCESSBASEDSOILEROSIONMODELINASMALLWATERSHEDINTHEHILLYLOESSREGION1CAIQiangguo2ABSTRACTAphysicalprocesbasedperstorm...  相似文献   

19.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号