首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《水文科学杂志》2013,58(4):704-712
Abstract

The upper Niger and Volta rivers exhibit a great and highly contrasting variability of inter-annual runoff. The Bani River, the largest tributary to the Niger River in Mali, shows a dramatic decrease in runoff after the 1970s, with the result that many boreholes in the region have dried up since the drought began. In contrast, the Nakambe River (Upper Volta basin, in Burkina Faso) shows an increase in runoff for the same period, leading to unexpected flood peaks that damaged infrastructures. The contribution that the groundwater and its variability make to surface runoff variability is assessed in this study by comparing the data of the national groundwater monitoring networks of Mali and Burkina Faso to surface runoff. Several variables are compared at the basin scale: the date of the maximum level of the water table, the annual rainfall, discharge, low flows and depletion coefficients. Variability in the low flows of the Bani River is well correlated to a decrease in the water table. Since 1970, the greater decrease in runoff in comparison to the rainfall decrease is due to a reduction in the baseflow, related to the cumulated rainfall deficit. Concerning the Nakambe River, the runoff increase is not supported by a water table increase, but is due to the increase in runoff coefficient related to land degradation.  相似文献   

2.
C. Dai 《水文科学杂志》2013,58(13):1616-1628
ABSTRACT

To improve the convergence of multiple-site weather generators (SWGs) based on the brute force algorithm (MBFA), a genetic algorithm (GA) is proposed to search the overall optimal correlation matrix. Precipitation series from weather generators are used as input to the hydrological model, the soil and water assessment tool (SWAT), to generate runoff over the Red Deer watershed, Canada for further runoff analysis. The results indicate that the SWAT model using SWG-generated data accurately represents the mean monthly streamflow for most of the months. The multi-site generators were capable of better representing the monthly streamflow variability, which was notably underestimated by the single-site version. In terms of extreme flows, the proposed method reproduced the observed extreme flow with smaller bias than MBFA, while the single-site generator significantly underestimated the annual maximum flows due to its poor capability in addressing partial precipitation correlations.  相似文献   

3.
《水文科学杂志》2013,58(2):457-465
Abstract

Periodicity of the runoff and the sediment load, and possible impacts from human activities and climatic changes, in the Yangtze River basin during 1963–2004 are discussed based on the monthly sediment and runoff data, and using the wavelet approach. Research results indicated that: (a) Sediment load changes are severely impacted by the different types of human activity (e.g. construction of water reservoirs, deforestation/afforestation); and the runoff variability is the direct result of climatic changes, e.g. the precipitation changes. (b) The impacts of human activity and climatic changes on the sediment load and runoff changes are greater in smaller river basins (e.g. the Jialingjiang River basin) than in larger river basins. The response of sediment load and runoff changes to the impacts of human activities and climatic changes are prompt and prominent in the Jialingjiang River basin relative to those in the mainstem of the Yangtze River basin. (c) Construction of the Three Gorges Dam has already had obvious impacts on the sediment transport process in the middle and lower Yangtze River basin, but shows no obvious influence on the runoff changes. Construction of the Three Gorges Dam will result in further re-adjustment of the scouring/filling process within the river channel in the middle and lower Yangtze River basin, and have corresponding effects on the altered sediment load because of the Dam's operation for the river channel, ecology, sustainable social economy and even the development of the Yangtze Delta. This will be of concern to local governments and policy makers.  相似文献   

4.
ABSTRACT

We investigated the isotopic composition of the Urumqi River and documented seasonal variability attributable to the mixing of various flow sources. Next, we applied these isotopic signals to partition the sources and studied their temporal variability in summer. The isotope hydrology separation results indicated that groundwater is the dominant streamflow source (approximately 62.7%) in the Urumqi River. Precipitation is an important source for the Urumqi River; approximately 19.1–20.7% of the runoff came from precipitation during summer and early autumn. In summer, approximately 21.1% of the runoff is derived from glacial meltwater. In summer, with the increasing distance to the glacier front, groundwater accounts for a larger and larger percentage of the river water, and the contributions of precipitation and glacial meltwater gradually diminish. Throughout 2012, the proportions of precipitation and glacial meltwater in the streamflow were 17.6% and 14.7%, respectively, and only 5% of the streamflow was derived from snowmelt.
Editor Z. W. Kundzewicz; Associate editor not assigned  相似文献   

5.
Abstract

Trends in high and low flows are valuable indicators of hydrological change because they highlight changes in various parts of the frequency distribution of streamflow series. This enables improved assessment of water availability in regions with high seasonal and inter-annual variability. There has been a substantial reduction in water resources in the Duero basin (Iberian Peninsula, Spain) and other areas of the Mediterranean region during the last 50 years, and this is likely to continue because of climate change. In this study, we investigated the evolution and trends in high and low flows in the Spanish part of the Duero basin, and in equivalent or closely-related precipitation indices for the period 1961–2005. The results showed a general trend of decrease in the frequency and magnitude of high flows throughout most of the basin. Moreover, the number of days with low flows significantly increased over this period. No clear relationship was evident between the evolution of high/low flows and changes in the distribution frequencies of the precipitation series. In contrast to what was expected, the number of days with heavy precipitation and the mean annual precipitation did not show significant trends across the basin, and the number of days without rainfall decreased slightly. The divergence between precipitation and runoff evolution was more accentuated in spring and summer. In the absence of trends in precipitation, it is possible that reforestation processes in the region, and increasing temperatures in recent decades, could be related to the decreasing frequency of high flows and the increasing frequency of low flows.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Morán-Tejeda, E., López-Moreno, J.I., Vicente-Serrano, S.M., Lorenzo-Lacruz, J. and Ceballos-Barbancho, A., 2012. The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrological Sciences Journal, 57 (4), 591–611.  相似文献   

6.
《水文科学杂志》2013,58(3):556-570
Abstract

Forest growth unfavourably reduces low flows and annual runoff in a basin in Japan. Annual precipitation and runoff of the watershed are summarized from observed daily rainfall and discharge, and annual evapotranspiration is estimated from the annual water balance. The water balance analysis shows obvious trends: reduced annual runoff and increased evapotranspiration over a 36-year period when forest growth increased the leaf area index. Between two periods, 1960–1969 and 1983–1992, mean annual runoff decreased 11%, from 1258 to 1118 mm, due to a 37% increase in evapotranspiration (precipitation minus runoff) from 464 to 637 mm. This increase in evapotranspiration cannot be attributed to changed evaporative demand, based on climatic variability over the 36-year period of record. Flow duration curves show reduced flows in response to forest growth. In particular, they suggest stronger absolute changes for higher flows but stronger proportional changes for medium and lower flows. A distributed model is applied to simulate the influences of five scenarios based on a 30% change in leaf area index and 5% change in soil storage capacity. From the simulation results, canopy growth appears to contribute much more to flow reduction than changes in soil storage capacity.  相似文献   

7.
B. Yu  Z. Zhu 《水文科学杂志》2015,60(7-8):1200-1212
Abstract

The Australian Water Balance model (AWBM) and the SimHyd rainfall–runoff model are conceptual models widely used for simulating daily flows in Australia. To evaluate their ability to model non-stationary daily flows, to quantify the effect of land disturbance, and to assess their performance in catchments outside Australia, these two models were applied to two small watersheds, the Fernow watershed No. 6 in West Virginia, USA, for the period 1959–2009, and the River Rimbaud watershed in the French Alps for the period 1968–2006. Both watersheds have experienced well documented disturbances as a result of clearing and fire, respectively. The modelling protocol followed was adopted for a workshop on hydrology under change, held during the 2013 IAHS Assembly in Göteborg, Sweden, which was based on split-sample tests. On balance, the AWBM worked marginally better than SimHyd for these two catchments, and neither model worked satisfactorily for the Fernow watershed where forest clearing, application of herbicide and changes in species composition had occurred. There is little difference in terms of model performance between periods when land disturbances occurred and other periods with relatively stable conditions. Conceptual models are better equipped to simulate climate-driven variations in the observed streamflow (e.g. the River Rimbaud), and inadequate in reproducing streamflow variability as a result of complex forest management practices.  相似文献   

8.
Rainfall–runoff modelling was conducted to estimate the flows that Latonyanda River contribute to Luvuvhu River downstream of Albasini Dam. The confluence of Latonyanda and Luvuvhu Rivers is ungauged. The contributed flows compensate for upstream water abstractions and periodic lack of releases from Albasini Dam. The flow contributions from tributaries to Luvuvhu River are important for ecosystem sustenance, meeting downstream domestic and agricultural water demand and ecological water requirements particularly in Kruger National Park. The upper Latonyanda River Quaternary Catchment (LRQC), with streamflow gauging station number A9H027 was delineated and used for rainfall–runoff modelling. The simulation was done using Mike 11 NAM rainfall–runoff model. Calibration and verification runs of Mike 11 NAM rainfall–runoff model were carried out using data for periods of 4 and 2 years, respectively. The model was calibrated using shuffled complex evolution optimizer. The model efficiency was tested using coefficient of determination (R2), root mean square error (RMSE), overall water balance error (OWBE) and percentage bias (PBIAS). The model parameters obtained from the upper LRQC were transferred and used together with rainfall and evaporation data for 40 years period in the simulation of runoff for the LRQC. The flows that Latonyanda River contribute to Luvuvhu River were computed by subtracting irrigation abstractions and runoff drained to Tshakhuma Dam from the simulated runoff time series of the LRQC. The observed and the simulated runoff showed similar trends and measures of performances for both calibration and verification runs fell within acceptable ranges. The pairs of values obtained for R2, RMSE, OWBE and PBIAS for calibration and verification were 0.86 and 0.73, 0.21 and 0.2, 2.1 and 1.3, and 4.1 and 3.4, respectively. The simulated runoff for LRQC correlated well with the areal rainfall showing that the results are reasonable. The mean and maximum daily flow contributions from the Latonyanda River are 0.91 and 49 m3/s respectively. The estimation of these ungauged flows makes it possible to plan and manage the water requirements for the downstream users.  相似文献   

9.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   

10.
《国际泥沙研究》2023,38(5):653-661
Studying the characteristics of runoff and sediment processes and revealing the sources of sediment provide key guidance for the scientific formulation of relevant soil erosion protection measures and water conservancy development plans. In the current study, the flow and sediment data of five hydrological stations on the main stream of the Fu River Basin (FRB) from 2007 to 2018 were selected to identify flood events, explore the variation of sediment transport along the FRB, and clarify the sediment sources. The results found that the Jiangyou–Fujiangqiao section is the main source of sediment in the FRB during the flood season. The runoff volume and sediment load during flood events in the Jiangyou–Fujiangqiao section accounted for 35% and 145% respectively of that of Xiaoheba station. These results combined with the change of the sediment load before and after the 2008 Wenchuan Earthquake (May 12) show that the sediment in this section mainly comes from the Fu River tributary–the Tongkou River watershed. The calculation results for the sediment carrying capacity of the Fu River show that the main stream was in a state of erosion in theory. However, according to the calculation results for the interval sediment yield during flood events, the sediment load at the Xiaoheba station was smaller than that at the Shehong station upstream. The analysis indicates that this was not because of sediment deposition in the river channel, but because of sand mining in the river channel and sediment interception by water conservancy projects. If heavy rainfall occurs in the FRB, the sediment accumulated upstream will move downstream with the resulting flood, and the sediment yield in the FRB may further increase. These research conclusions can provide reference information for improving the prediction and management ability of soil and water loss in the FRB and scientific regulation of the Three Gorges Reservoir.  相似文献   

11.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

12.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

13.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

14.
Abstract

Climate and soil characteristics vary considerably around the Lake Victoria basin resulting in high spatial and temporal variability in catchment inflows. However, data for estimating the inflows are usually sparsely distributed and error-prone. Therefore, modelled estimates of the flows are highly uncertain, which could explain early difficulties in reproducing the lake water balance. The aim of this study was to improve the estimates of catchment flow to Lake Victoria. The WASMOD model was applied to the Nzoia River, one of the major tributaries to Lake Victoria. Uncertainty was assessed within the GLUE framework. During calibration, log-transformation was performed on both simulated and observed flows. The results showed that, despite its simple structure, WASMOD produces acceptable results for the basin. For a Nash-Sutcliffe efficiency (NS) threshold of 0.6, the percentage of observations bracketed by simulations (POBS) was 74%, the average relative interval length (ARIL) was 0.93, and the maximum NS value was 0.865. The residuals were shown to be homoscedastic, normally distributed and nearly independent. When the NS threshold was increased to 0.8, POBS decreased to 54% with an improvement of ARIL to 0.49, highlighting the effect of the subjective choice of likelihood threshold.

Citation Kizza, M., Rodhe, A., Xu, C.-Y. & Ntale, H. K. (2011) Modelling catchment inflows into Lake Victoria: uncertainties in rainfall–runoff modelling for the Nzoia River. Hydrol. Sci. J. 56(7), 1210–1226.  相似文献   

15.
ABSTRACT

We examine the applicability of predicting the daily flow–duration curve (FDC) using mean monthly runoff represented in its stochastic form (MM_FDC) to aid in predictions in ungauged basins, using long-term hydroclimatic data at 73 catchments of humid climate, in the eastern USA. The analysis uses soil hydrological properties, soil moisture storage capacity and the predominant runoff generation mechanism. The results show that MM_FDC did not distinguish the shapes of the upper and lower thirds of the FDC. The upper third is where the precipitation pattern and the antecedent moisture conditions are dominant, while the lower third is where drought-induced low flows and the evapotranspiration effect are prevalent. It is possible to use the MM_FDC to predict the middle third of the FDC (exceedence probabilities between 33% and 66%). The method is constrained by the catchment flow variability (slope of FDC), which changes in accordance with landscape properties and the predominant runoff generation mechanism.  相似文献   

16.
Abstract

River water temperature regimes are expected to change along with climate over the next decades. This work focuses on three important salmon rivers of eastern Canada, two of which warm up most summers to temperatures higher than the Atlantic salmon lethal limit (>28°C). Water temperature was monitored at 53 sites on the three basins during 2–18 summers, with about half of these sites either known or potential thermal refugia for salmon. Site-specific statistical models predicting water temperature, based on 10 different climate scenarios, were developed in order to assess how many of these sites will remain cool enough to serve as refugia in the future (2046–2065). The results indicate that, while 19 of the 23 identified refugia will persist, important increases in the occurrence and duration of temperature events in excess of 24°C and 28°C, respectively, in the mainstems of the rivers, will lead to higher demands for thermal refugia in the salmonid populations.
Editor Z.W. Kundzewicz; Associate editor T. Okruszko  相似文献   

17.
River runoff from the four largest Siberian river basins (the Ob, Yenisei, Lena, and Kolyma) considerably contributes to freshwater flux into the Arctic Ocean from the Eurasian continent. However, the effects of variation in snow cover fraction on the ecohydrological variations in these basins are not well understood. In this study, we analysed the spatiotemporal variability of the maximum snow cover fraction (SCFmax) in the four Siberian river basins. We compared the SCFmax from 2000 to 2016 with data in terms of monthly temperature and precipitation, night-time surface temperatures, the terrestrial water storage anomaly (TWSA), the normalised difference vegetation index (NDVI), and river runoff. Our results exhibit a decreasing trend in the April SCFmax values since 2000, largely in response to warming air temperatures in April. We identified snowmelt water as the dominant control on the observed increase in the runoff contribution in May across all four Siberian river basins. In addition, we detected that the interannual river runoff was predominantly controlled by interannual variations in the TWSA. The NDVI in June was strongly controlled by the timing of the snowmelt along with the surface air temperature and TWSA in June. The rate of increase in the freshwater flux from the four Siberian rivers decreased from 2000 to 2016, exhibiting large interannual variations corresponding to interannual variations in the TWSA. However, we identified a clear increase trend in the freshwater flux of ~4 km3/year when analysing the long-term 39-year historical record (1978–2016). Our results suggest that continued global warming will accelerate the transition towards the earlier timing of snowmelt and spring freshwater flux into the Arctic Ocean. Our findings also highlight the effects of earlier snowmelt on ecohydrological changes in the Northern Hemisphere.  相似文献   

18.
Abstract

Climate change will likely have severe effects on water shortages, flood disasters and the deterioration of aquatic systems. In this study, the hydrological response to climate change was assessed in the Wei River basin (WRB), China. The statistical downscaling method (SDSM) was used to downscale regional climate change scenarios on the basis of the outputs of three general circulation models (GCMs) and two emissions scenarios. Driven by these scenarios, the Soil and Water Assessment Tool (SWAT) was set up, calibrated and validated to assess the impact of climate change on hydrological processes of the WRB. The results showed that the average annual runoff in the periods 2046–2065 and 2081–2100 would increase by 12.4% and 45%, respectively, relative to the baseline period 1961–2008. Low flows would be much lower, while high flows would be much higher, which means there would be more extreme events of droughts and floods. The results exhibited consistency in the spatial distribution of runoff change under most scenarios, with decreased runoff in the upstream regions, and increases in the mid- and lower reaches of the WRB.
Editor Z.W. Kundzewicz; Associate editor D. Yang  相似文献   

19.
ABSTRACT

Much of New Hampshire and Vermont (combined area = 50 000 km2) has hilly to mountainous topography. Elevations range from 0 to 1900 m a.s.l. (average = 360 m), and many peaks exceed 1200 m. Mean annual precipitation increases strongly with elevation (adjusted for additional orographic effects and distance from moisture sources), as do mean monthly precipitation, snow depth, and snow water equivalents. Mean monthly temperatures decrease with elevation, largely masking latitudinal effects, and can be used with other information to show how potential evapotranspiration changes with elevation. These effects combine to produce strong elevational increases in mean annual streamflow and, more surprisingly, cause streamflow variability, both short term and annual, to decrease with mean drainage basin elevation. Low flows for a given exceedance probability increase markedly as mean basin elevation increases above 340 m. Flood peaks for a given return period also increase with mean basin elevation. Slope and aspect affect the timing of snowmelt runoff, but otherwise appear to have only second order effects on hydrology. The effect of elevation is so dominant in the region that it can be used as the single independent variable in predicting many streamflow parameters.  相似文献   

20.
Abstract

Statistical tests have been widely used for several decades to identify and test the significance of trends in runoff and other hydrological data. The Mann-Kendall (M-K) trend test is commonly used in trend analysis. The M-K test was originally proposed for random data. Several variations of the M-K test, as well as pre-processing of data for use with it, have been developed and used. The M-K test under the scaling hypothesis has been developed recently. The basic objective of the research presented in this paper is to investigate the trends in Malaysian monthly runoff data. Identification of trends in runoff data is useful for planning water resources projects. Existence of statistically significant trends would also lead to identification of possible effects of climate change. Monthly runoff data for Malaysian rivers from the past three decades are analysed, in both five-year segments and entire data sequences. The five-year segments are analysed to investigate the variability in trends from one segment to another in three steps: (1) the M-K tests are conducted under random and correlation assumptions; (2) the Hurst scaling parameter is estimated and tested for significance; and (3) the M-K test under the scaling hypothesis is conducted. Thus the tests cover both correlation and scaling. The results show that the number of significant segments in Malaysian runoff data would be the same as those found under the assumption that the river flow sequences are random. The results are also the same for entire sequences. Thus, monthly Malaysian runoff data do not have statistically significant trends. Hence there are no indications of climate change in Malaysian runoff data.

Citation Rao, A. R., Azli, M. & Pae, L. J. (2011) Identification of trends in Malaysian monthly runoff under the scaling hypothesis. Hydrol. Sci. J. 56(6), 917–929.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号