首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A new methodology is proposed for the calibration of distributed hydrological models at the basin scale by constraining an internal model variable using satellite data of land surface temperature (LST). The model algorithm solves the system of energy and mass balances in terms of a representative equilibrium temperature that governs the fluxes of energy and mass over the basin domain. This equilibrium surface temperature, which is a critical model state variable, is compared to operational satellite LST, while calibrating soil hydraulic parameters and vegetation variables differently in each pixel, minimizing the errors. This procedure is compared to the traditional calibration using only discharge measurements. The distributed energy water balance model, Flash-flood Event-based Spatially-distributed rainfall–runoff Transformation – Energy Water Balance model (FEST-EWB), is used to test this approach. This methodology is applied to the Upper Yangtze River basin (China) using MODIS LST retrieved from satellite data in the framework of the NRSCC-ESA DRAGON-2 Programme. The calibration procedure based on LST seems to outperform the calibration based on discharge, with lower relative error and higher Nash-Sutcliffe efficiency index on cumulated volume.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

2.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

3.
Abstract

Recent developments in hydrological modelling of river basins are focused on prediction in ungauged basins, which implies the need to improve relationships between model parameters and easily-obtainable information, such as satellite images, and to test the transferability of model parameters. A large-scale distributed hydrological model is described, which has been used in several large river basins in Brazil. The model parameters are related to classes of physical characteristics, such as soil type, land use, geology and vegetation. The model uses two basin space units: square grids for flow direction along the basin and GRU—group response units—which are hydrological classes of the basin physical characteristics for water balance. Expected ranges of parameter values are associated with each of these classes during the model calibration. Results are presented of the model fitting in the Taquari-Antas River basin in Brazil (26 000 km2 and 11 flow gauges). Based on this fitting, the model was then applied to the Upper Uruguay River basin (52 000 km2), having similar physical conditions, without any further calibration, in order to test the transferability of the model. The results in the Uruguay basin were compared with recorded flow data and showed relatively small errors, although a tendency to underestimate mean flows was found.  相似文献   

4.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

5.
Abstract

In this study, a hydrological model and spatial technologies have been employed to assess water availability in the Mat River basin, southern Mizoram, India. Furthermore, the results obtained from the SWAT (Soil and Water Assessment Tool) model, satellite data and GIS tools were utilized to identify the hydropower potential in the basin. Thirty three sites with hydropower potential were identified within 147 km2 of the Mat River basin. A total of 3039, 1127 and 805 kW can be harnessed with 50, 75 and 90% dependability, respectively. The study revealed that the hydropower potential of a river basin can be correctly assessed by employing a digital elevation model, stream network data and a hydrological model, such as the SWAT model, within a GIS framework.
Editor D. Koutsoyiannis  相似文献   

6.
Abstract

Conceptual semi-distributed hydrological models are developed for a limited consideration of spatial heterogeneity of hydrological characteristics within a river basin. This heterogeneity can be described by area distribution functions of hydrological characteristics which can be estimated in a most effective way by a Geographical Information System (GIS). It is shown how the application of a GIS can support the development and the calibration of a conceptual hydrological model. GIS information is used to establish the criteria for sub-division of the river basin and for estimation of model structures (especially for further horizontal divisions of each basin into more homogeneous parts). That information is also used for estimation of basin characteristics and their differences between sub-basins as a support for parameter calibration by optimization. The methodology presented can be used for the development of a model structure on an objective basis and for model calibration which considers the physical explanation of model parameters. The proposed method was successfully applied to a river basin within the Mosel basin (Germany).  相似文献   

7.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

8.
ABSTRACT

This study investigated the impacts of human activities, especially water resources development, and climate variation on the runoff reduction and its spatial variability in the Huaihe Basin, the sixth largest river basin in China, which is also an important agricultural area in Eastern China. The annual runoff had statistically negative trends at all hydrological stations located on the main river and the major tributaries, which ranges from ?0.13 to ?1.99 mm year-1. The Budyko-based approach was employed to quantitatively differentiate the runoff reduction driven by human activities and climate variation. Results showed that the precipitation decrease contributed to the runoff reduction in all study sub-catchments. However, significant reductions of the annual runoff in some sub-catchments were mainly caused by the human activities rather than the precipitation decrease. Spatial variability of hydrological changes were closely related to different types of human activities especially irrigation and water diversion. In the southern sub-catchments, water diversion played a significant role in runoff reduction, while agriculture irrigation was the relatively dominant driving factor in the northern sub-catchments. The results show the complexity in the catchment hydrological response to the changes in climate forcing and human water resources development and the effectiveness of the Budyko-based approach for attribution analysis.
Editor D. Koutsoyiannis; Associate editor C. Cudennec  相似文献   

9.
Abstract

This paper assesses strategic water availability and use under different development pathways on a basin scale using remote sensing (RS), geographical information systems (GIS) and a spatial water budget model (SWBM). The SWBM was applied to the Upper Ing Basin in northern Thailand to investigate the spatial and temporal variations in the location of streams and water yields from different parts of the basin. The base simulation was carried out for the years 1998–2007 using a DEM and actual land-use data at 100-m resolution. The simulated stream network was compared with topographic maps under different flow conditions, which were successfully represented. The 10-year average simulated river flow rate was 1300 L/s, but it more than doubled during periods of heavy rainfall and decreased below 600 L/s in dry seasons. The total length of the streams (based on flow threshold of 25 L/s) on a typical day in the dry season differed by a factor of approx. 1.5. Agricultural water needs and possible extraction were assessed and presented by dividing the basin into 10 different zones based on the stream network. The results show that there is the potential for harvesting significant quantities of water at different spatial gradients with no initial water supply for irrigation. Monthly water yields for each zone were computed; the results varied from less than 50% to over 137% of the per hectare water yield for the entire basin. This variation was due to differences in topography and land cover. The impact of land use and climate change on streamwater availability was also studied. The basin shows very different hydrological responses. The changes in average river flow relative to the base simulation were +27.6%,??32.1%, +94% and +52.9% under deforestation, changing land use from paddy field to orchard, bare soil and increased rainfall scenarios, respectively.

Citation Bahadur KC, K. (2011) Assessing strategic water availability using remote sensing, GIS and a spatial water budget model: case study of the Upper Ing Basin, Thailand. Hydrol. Sci. J. 56(6), 994–1014.  相似文献   

10.
Abstract

Steep mountainous areas account for 70% of all river catchments in Japan. To predict river discharge for the mountainous catchments, many studies have applied distributed hydrological models based on a kinematic wave approximation with surface and subsurface flow components (DHM-KWSS). These models reproduce observed river discharge of catchments in Japan well; however, the applicability of a DHM-KWSS to catchments with different geographical and climatic conditions has not been sufficiently examined. This research applied a DHM-KWSS to two river basins that have different climatic conditions from basins in Japan to examine the transferability of the DHM-KWSS model structure. Our results show that the DHM-KWSS model structure explained flow regimes for a wet river basin as well as a large flood event in an arid basin; however, it was unable to explain long-term flow regimes for the arid basin case study.  相似文献   

11.
ABSTRACT

Standard hydrological methods have been used to evaluate the water balance of a Central American river basin located in Costa Rica, for the purpose of appraising its water resources potential.

Estimates are made of the present utilization of water by each major sectorial user, and a comparison of demand and supply is presented that enables the determination of the degree of present utilisation of water resources.  相似文献   

12.
ABSTRACT

High-resolution data on the spatial pattern of water use are a prerequisite for appropriate and sustainable water management. Based on one well-validated hydrological model, the Distributed Time Variant Gains Model (DTVGM), this paper obtains reliable high-resolution spatial patterns of irrigation, industrial and domestic water use in continental China. During the validation periods, ranges of correlation coefficient (R) and Nash-Sutcliffe efficiency (NSE) coefficient are 0.67–0.96 and 0.51–0.84, respectively, between the observed and simulated streamflow of six hydrological stations, indicating model applicability to simulate the distribution of water use. The simulated water use quantities have relative errors (RE) less than 5% compared with the observed. In addition, the changes in streamflow discharge were also correctly simulated by our model, such as the Zhangjiafen station in the Hai River basin with a dramatic decrease in streamflow, and the Makou station in the Pearl River basin with no significant changes. These changes are combined results of basin available water resources and water use. The obtained high-resolution spatial pattern of water use could decrease uncertainty of hydrological simulation and guide water management efficiently.
Editor M.C. Acreman; Associate editor X. Fang  相似文献   

13.
《水文科学杂志》2013,58(6):989-1005
Abstract

A combination of water balances and rainfall—runoff regressions is used to calculate infiltration, overland flow, baseflow and change to the surface water reservoir, on a monthly basis; evapotranspiration from the underground reservoir, on an annual basis; and a lag phase of maximum infiltration and maximum baseflow within a hydrological year. The water balance equations are written for catchment areas formed on crystalline rocks and located in temperate climates. The regression lines are fitted to precipitations and river flows. In a first run, the model is tested with the Corgo River hydrographic basin, a small watershed in the Trás-os-Montes and Alto Douro province, northern Portugal. The results compare favourably with results of other groups, working under similar environmental conditions. The sensitivity of the model to changes in the basin characteristics and climate is tested by a second run using data from the Terva River basin, a nearby catchment that is much smaller than the Corgo basin and has a much lower effective precipitation, defined here as a difference between precipitation and potential evapotranspiration. As a consequence of having a lower effective precipitation, the river dry-out starts earlier in the Terva (May) than in the Corgo (June).  相似文献   

14.
Identification of the most sensitive hydrological regions to a changing climate is essential to target adaptive management strategies. This study presents a quantitative assessment of spatial patterns, inter‐annual variability and climatic sensitivity of the shape (form) and magnitude (size) of annual river/stream water temperature regimes across England and Wales. Classification of long‐term average (1989–2006) annual river (air) temperature regime dynamics at 88 (38) stations within England and Wales identified spatially differentiable regions. Emergent river temperature regions were used to structure detailed hydroclimatological analyses of a subset of 38 paired river and air temperature stations. The shape and magnitude of air and water temperature regimes were classified for individual station‐years; and a sensitivity index (SI, based on conditional probability) was used to quantify the strength of associations between river and air temperature regimes. The nature and strength of air–river temperature regime links differed between regions. River basin properties considered to be static over the timescale of the study were used to infer modification of air–river temperature links by basin hydrological processes. The strongest links were observed in regions where groundwater contributions to runoff (estimated by basin permeability) were smallest and water exposure time to the atmosphere (estimated by basin area) was greatest. These findings provide a new large‐scale perspective on the hydroclimatological controls driving river thermal dynamics and, thus, yield a scientific basis for informed management and regulatory decisions concerning river temperature within England and Wales. © 2013 The Authors. Hydrological Processes published by John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

16.
Non‐point source (NPS) pollution from agricultural land is increasing exponentially in many countries of the world, including India. A modified approach based on the conservation of mass and reaction kinetics has been derived to estimate the inflow of non‐point source pollutants from a river reach. Two water quality variables, namely, nitrate (NO3) and ortho‐phosphate (o‐PO4), which are main contributors as non‐point source pollution, were monitored at four locations of River Kali, western Uttar Pradesh, India, and used for calibration and validation of the model. Extensive water quality sampling was done with a total of 576 field data sets collected during the period from March 1999 to February 2000. Remote sensing and geographical information system (GIS) techniques were used to obtain land use/land cover of the region, digital elevation model (DEM), delineation of basin area contributing to non‐point source pollution at each sampling location and drainage map. The results obtained from a modified approach were compared with the existing mass‐balance equations and distributed modelling, and the performances of different equations were evaluated using error estimation viz. standard error, normal mean error, mean multiplicative error and correlation statistics. The developed model for the River Kali minimizes error estimates and improves correlation between observed and computed NPS loads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

18.
ABSTRACT

Hydrological processes in hilly watersheds are significantly affected by variations in elevation; however, the hydrological functions of different vertical vegetation belts, have rarely been reported. The distributed hydrological model WEP-L (Water and Energy transfer Process in Large river basins) was applied to analyse vertical variations in the hydrological processes of Qingshui River basin (QRB), Wutai Mountain (altitude: 3058 m a.s.l.), China. The results show that the highest ratio of evapotranspiration to precipitation occurs at 1800 m a.s.l. Below 1800 m, evapotranspiration is mainly controlled by precipitation, and in regions above1800 m it is controlled by energy. The runoff coefficients for different vertical vegetation belts may be ranked as follows: farmland > grassland > subalpine meadow > evergreen coniferous shrub forest > deciduous broad-leaved forest. Grassland is the largest runoff production area, contributing approximately 39.10% to the annual water yield of the QRB. The runoff from forested land decreased to a greater extent than the grassland runoff. Increasing forest cover may increase evapotranspiration and reduce runoff. These results are important, not only for further understanding of the hydrological mechanisms in this basin, but also for implementing the sustainable management of water resources and ecosystems in other mountainous regions.  相似文献   

19.
The aim of this review is to provide a basis for selecting a suitable hydrological model, or combination of models, for hydrological drought forecasting in Africa at different temporal and spatial scales; for example short and medium range (1–10 days or monthly) forecasts at medium to large river basin scales or seasonal forecasts at the Pan-African scale. Several global hydrological models are currently available with different levels of complexity and data requirements. However, most of these models are likely to fail to properly represent the water balance components that are particularly relevant in arid and semi-arid basins in sub-Saharan Africa. This review critically looks at weaknesses and strengths in the representation of different hydrological processes and fluxes of each model. The major criteria used for assessing the suitability of the models are (1) the representation of the processes that are most relevant for simulating drought conditions, such as interception, evaporation, surface water-groundwater interactions in wetland areas and flood plains and soil moisture dynamics; (2) the capability of the model to be downscaled from a continental scale to a large river basin scale model; and (3) the applicability of the model to be used operationally for drought early warning, given the data availability of the region. This review provides a framework for selecting models for hydrological drought forecasting, conditional on spatial scale, data availability and end-user forecast requirements. Among 16 well known hydrological and land surface models selected for this review, PCR-GLOBWB, GWAVA, HTESSEL, LISFLOOD and SWAT show higher potential and suitability for hydrological drought forecasting in Africa based on the criteria used in this evaluation.  相似文献   

20.
The master plans for the management of river basins have been elaborated. The territory of Bulgaria is divided into four main hydrological zones - Danube, Black Sea, East and West Mediterranean hydrological zones. The rivers from Danube zone discharged directly to the Danube river, the North boundary of the country. All rivers from the eastern part of Bulgaria discharged directly to the Black Sea. The rivers from East and West Mediterranean hydrological zones discharged to Mediterranean Sea after flowing trough Greece and/or Turkey. The main river basins in Bulgaria were subjects to the evaluation of master plans.During the elaboration of the master plans the following elements have been investigated:
Demographical characteristics of the stakeholders in the river basin.
Economical overview of the stakeholders.
Estimation of surface water availabilities and resources; Water quantity.
Groundwater overview and estimation of available groundwater resources.
Water quality of surface and ground water; sediment load.
Estimation of water use for domestic, irrational, agricultural and industrial water supply.
Ecosystems in the river basin; Tundja river basin ecosystems.
Master Plans elaboration for 2010.
Water balance calculations for 1998 and 2010.
The aim of this paper is to present an overview of Tundja river basin management. Tundja is one of the biggest tributaries of Mariza river and it is join it in the territory of Turkey. The basin belongs to the East Mediterranean hydrological zone. The hydrological investigations and estimations of natural river flow along the main river body and it’s tributaries will be discussed in details. The calculations concern 1961-2004 study period. Long-term assessment has been performed. The characteristics of the monthly, annual, minimum and maximum river discharges have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号