首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT

With the increasing use of telemetry in the control of water resource systems, a considerable amount of effort is being devoted to the development of models and parameter estimation techniques for on-line use. A variety of models and parameter estimation algorithms have been considered, ranging from complex conceptual models of the soil moisture accounting type, which are traditionally calibrated off-line, to state-space/Kalman filter models which, perhaps, have enjoyed undue popularity in the recent literature due to their mathematical elegance. The fundamental assumptions underlying the various approaches are reviewed, and the validity of these assumptions in the hydrological forecasting context is assessed. The paper draws on some results obtained during a recent workshop at the Institute of Hydrology in making assessments of the relative merits of different models and parameter estimation algorithms; these results have been derived from an intercomparison of a number of real time forecasting models.  相似文献   

2.
Abstract

Abstract The prediction and estimation of suspended sediment concentration are investigated by using multi-layer perceptrons (MLP). The fastest MLP training algorithm, that is the Levenberg-Marquardt algorithm, is used for optimization of the network weights for data from two stations on the Tongue River in Montana, USA. The first part of the study deals with prediction and estimation of upstream and down-stream station sediment data, separately, and the second part focuses on the estimation of downstream suspended sediment data by using data from both stations. In each case, the MLP test results are compared to those of generalized regression neural networks (GRNN), radial basis function (RBF) and multi-linear regression (MLR) for the best-input combinations. Based on the comparisons, it was found that the MLP generally gives better suspended sediment concentration estimates than the other neural network techniques and the conventional statistical method (MLR). However, for the estimation of maximum sediment peak, the RBF was mostly found to be better than the MLP and the other techniques. The results also indicate that the RBF and GRNN may provide better performance than the MLP in the estimation of the total sediment load.  相似文献   

3.
Abstract

This paper presents the development of a framework for data collection network design that considers sustainable development goals. The proposed framework adopts sustainable development principles and incorporates and revises traditional methodologies used in data collection network design. Important components of the framework include a focus on hydrological information, the preservation of long term gauging stations, and the adoption of integrated ecosystem monitoring. The eventual adoption of the framework should ensure that hydrological information required for effective decision making in water resources is available even as hydrometric data collection networks are rationalized.  相似文献   

4.
Abstract

Abstract Evaporation is one of the fundamental elements in the hydrological cycle, which affects the yield of river basins, the capacity of reservoirs, the consumptive use of water by crops and the yield of underground supplies. In general, there are two approaches in the evaporation estimation, namely, direct and indirect. The indirect methods such as the Penman and Priestley-Taylor methods are based on meteorological variables, whereas the direct methods include the class A pan evaporation measurement as well as others such as class GGI-3000 pan and class U pan. The major difficulty in using a class A pan for the direct measurements arises because of the subsequent application of coefficients based on the measurements from a small tank to large bodies of open water. Such difficulties can be accommodated by fuzzy logic reasoning and models as alternative approaches to classical evaporation estimation formulations were applied to Lake Egirdir in the western part of Turkey. This study has three objectives: to develop fuzzy models for daily pan evaporation estimation from measured meteorological data, to compare the fuzzy models with the widely-used Penman method, and finally to evaluate the potential of fuzzy models in such applications. Among the measured meteorological variables used to implement the models of daily pan evaporation prediction are the daily observations of air and water temperatures, sunshine hours, solar radiation, air pressure, relative humidity and wind speed. Comparison of the classical and fuzzy logic models shows a better agreement between the fuzzy model estimations and measurements of daily pan evaporation than the Penman method.  相似文献   

5.
Abstract

Abstract Stream sampling programmes for water quality estimation constitute a statistical survey of a correlated population. The properties of parameter and other estimates made from sample values from such programmes are set in the context of statistical sampling theory. It is shown that a model-based rather than a design-based approach to statistical analysis is usually appropriate. The influence of model structure and sampling design on the robustness and suitability of estimation procedures is investigated, and relationships with kriging are demonstrated. Methodology is discussed with reference to data from a UK sampling programme  相似文献   

6.
The use of historical data can significantly reduce the uncertainty around estimates of the magnitude of rare events obtained with extreme value statistical models. For historical data to be included in the statistical analysis a number of their properties, e.g. their number and magnitude, need to be known with a reasonable level of confidence. Another key aspect of the historical data which needs to be known is the coverage period of the historical information, i.e. the period of time over which it is assumed that all large events above a certain threshold are known. It might be the case though, that it is not possible to easily retrieve with sufficient confidence information on the coverage period, which therefore needs to be estimated. In this paper methods to perform such estimation are introduced and evaluated. The statistical definition of the problem corresponds to estimating the size of a population for which only few data points are available. This problem is generally refereed to as the German tanks problem, which arose during the second world war, when statistical estimates of the number of tanks available to the German army were obtained. Different estimators can be derived using different statistical estimation approaches, with the maximum spacing estimator being the minimum-variance unbiased estimator. The properties of three estimators are investigated by means of a simulation study, both for the simple estimation of the historical coverage and for the estimation of the extreme value statistical model. The maximum spacing estimator is confirmed to be a good approach to the estimation of the historical period coverage for practical use and its application for a case study in Britain is presented.  相似文献   

7.
Abstract

Conceptual semi-distributed hydrological models are developed for a limited consideration of spatial heterogeneity of hydrological characteristics within a river basin. This heterogeneity can be described by area distribution functions of hydrological characteristics which can be estimated in a most effective way by a Geographical Information System (GIS). It is shown how the application of a GIS can support the development and the calibration of a conceptual hydrological model. GIS information is used to establish the criteria for sub-division of the river basin and for estimation of model structures (especially for further horizontal divisions of each basin into more homogeneous parts). That information is also used for estimation of basin characteristics and their differences between sub-basins as a support for parameter calibration by optimization. The methodology presented can be used for the development of a model structure on an objective basis and for model calibration which considers the physical explanation of model parameters. The proposed method was successfully applied to a river basin within the Mosel basin (Germany).  相似文献   

8.
Abstract

One of the main challenges faced by hydrologists and water engineers is the estimation of variables needed for water resources planning and management in ungauged river basins. To this end, techniques for transposing information, such as hydrological regional analyses, are widely employed. A method is presented for regionalizing flow-duration curves (FDCs) in perennial, intermittent and ephemeral rivers, based on the extended Burr XII probability distribution. This distribution shows great flexibility to fit data, with accurate reproduction of flow extremes. The performance analysis showed that, in general, the regional models are able to synthesize FDCs in ungauged basins, with a few possible drawbacks in the application of the method to intermittent and ephemeral rivers. In addition to the regional models, we summarize the experience of using synthetic FDCs for the indirect calibration of the Rio Grande rainfall–runoff model parameters in ungauged basins.

Editor D. Koutsoyiannis

Citation Costa, V., Fernandes, W., and Naghettini, M., 2013. Regional models of flow-duration curves of perennial and intermittent streams and their use for calibrating the parameters of a rainfall–runoff model. Hydrological Sciences Journal, 59 (2), 262–277.  相似文献   

9.
ABSTRACT

The application of artificial neural networks (ANNs) has been widely used recently in streamflow forecasting because of their ?exible mathematical structure. However, several researchers have indicated that using ANNs in streamflow forecasting often produces a timing lag between observed and simulated time series. In addition, ANNs under- or overestimate a number of peak flows. In this paper, we proposed three data-processing techniques to improve ANN prediction and deal with its weaknesses. The Wilson-Hilferty transformation (WH) and two methods of baseflow separation (one parameter digital filter, OPDF, and recursive digital filter, RDF) were coupled with ANNs to build three hybrid models: ANN-WH, ANN-OPDF and ANN-RDF. The network behaviour was quantitatively evaluated by examining the differences between model output and observed variables. The results show that even following the guidelines of the Wilson-Hilferty transformation, which significantly reduces the effect of local variations, it was found that the ANN-WH model has shown no significant improvement of peak flow estimation or of timing error. However, combining baseflow with streamflow and rainfall provides important information to ANN models concerning the flow process operating in the aquifer and the watershed systems. The model produced excellent performance in terms of various statistical indices where timing error was totally eradicated and peak flow estimation significantly improved.
Editor D. Koutsoyiannis; Associate editor Y. Gyasi-Agyei  相似文献   

10.
Abstract

Access to hydrometric information underpins many areas of effective water management. This paper explores the operational practices of one national hydrological information service, the UK National River Flow Archive, in collating, managing and providing access to river flow data. An information lifecycle approach to hydrometric data management is advocated, with the paper detailing current UK procedures in the areas of: monitoring network design and development; data sensing and recording; validation and archival; synthesis and analysis; and data dissemination. The methods and policies outlined herein are widely transferable to other hydrological data archives around the world.

Editor D. Koutsoyiannis

Citation Dixon, H., Hannaford, J., and Fry, M.J., 2013. The effective management of national hydrometric data: experiences from the United Kingdom. Hydrological Sciences Journal, 58 (7), 1383–1399.  相似文献   

11.
Abstract

Estimation of monthly runoff statistical properties, such as monthly means and variances, is usually needed to design and evaluate water resource systems. If no local recorded data are available, a transfer of information through different alternative procedures can be used. In this paper, the use of linear Transfer Function (TF) models with precipitation series as inputs is proposed to estimate statistical properties of the resulting runoff series. Empirical relationships based on data from watersheds in the mountainous zone of central Chile are suggested to estimate parameters of low-order TF models and some of their properties.  相似文献   

12.
Abstract

Accurate forecasting of streamflow is essential for the efficient operation of water resources systems. The streamflow process is complex and highly nonlinear. Therefore, researchers try to devise alterative techniques to forecast streamflow with relative ease and reasonable accuracy, although traditional deterministic and conceptual models are available. The present work uses three data-driven techniques, namely artificial neural networks (ANN), genetic programming (GP) and model trees (MT) to forecast river flow one day in advance at two stations in the Narmada catchment of India, and the results are compared. All the models performed reasonably well as far as accuracy of prediction is concerned. It was found that the ANN and MT techniques performed almost equally well, but GP performed better than both these techniques, although only marginally in terms of prediction accuracy in normal and extreme events.

Citation Londhe, S. & Charhate, S. (2010) Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 55(7), 1163–1174.  相似文献   

13.
Abstract

A risk assessment procedure is described for use in managing a system of pumped-storage reservoirs in the Thames basin during a drought. Historical daily rainfall sequences are used as equi-probable scenarios of future rainfall. These are transformed to flow, reservoir level, and demand restriction sequences through the use of rainfall-runoff and water resource system models. The risk assessment information required is then obtained through a statistical analysis of these sequences. A novel technique is presented for incorporating monthly rainfall forecasts, presented as probabilities of rainfall being above average, average, or below average, into the risk assessment scheme. Information on current hydrological conditions is incorporated in the procedure through the use of recently observed natural flows to adjust the internal state variables of a conceptual rainfall-runoff model to achieve agreement between observed and model flow. The overall procedure is accommodated within a decision support system for drought management which is implemented on a microcomputer and makes extensive use of interactive menus, forms and colour graphic displays. A key feature of the system is the maintenance of an up-to-date archive of hydrometric data which is achieved through a real-time communication link with a second computer dedicated to real-time data acquisition via telemetry. Monitoring the reliability of the water resource system during droughts is made a quick and easy task, and the effect of a change in the operating policy on system reliability can be readily assessed. The information obtained provides valuable support for tactical decision-making within the overall long-term operating strategy.  相似文献   

14.
《水文科学杂志》2013,58(3):365-370
Abstract

Gauging stations where the stage—discharge relationship is affected by hysteresis due to unsteady flow represent a challenge in hydrometry. In such situations, the standard hydrometric practice of fitting a single-valued rating curve to the available stage—discharge measurements is inappropriate. As a solution to this problem, this study provides a method based on the Jones formula and nonlinear regression, which requires no further data beyond the available stage—discharge measurements, given that either the stages before and after each measurement are known along with the duration of each measurement, or a stage hydrograph is available. The regression model based on the Jones formula rating curve is developed by applying the monoclinal rising wave approximation and the generalized friction law for uniform flow, along with simplifying assumptions about the hydraulic and geometric properties of the river channel in conjunction with the gauging station. Methods for obtaining the nonlinear least-squares rating-curve estimates, while factoring in approximated uncertainty, are discussed. The broad practical applicability and appropriateness of the method are demonstrated by applying the model to: (a) an accurate, comprehensive and detailed database from a hydropower-generated highly dynamic flow in the Chattahoochee River, Georgia, USA; and (b) data from gauging stations in two large rivers in the USA affected by hysteresis. It is also shown that the model is especially suitable for post-modelling hydraulic and statistical validation and assessment.  相似文献   

15.
Abstract

Available data from nearby gauging stations can provide a great source of hydrometric information that is potentially transferable to an ungauged site. Furthermore, streamflow measurements may even be available for the ungauged site. This paper explores the potential of four distance-based regionalization methods to simulate daily hydrographs at almost ungauged pollution-control sites. Two methods use only the hydrological information provided by neighbouring catchments; the other two are new regionalization methods parameterized with a limited number of streamflow data available at the site of interest. Based on a network of 149 streamgauges and 21 pollution-control sites located in the Upper Rhine-Meuse area, the comparative assessment demonstrates the benefit of making available point streamflow measurements at the location of interest for improving quantitative streamflow prediction. The advantage is moderate for the prediction of flow types (stormflow, recession flow, baseflow) and pulse shape (duration of rising limb and falling limb).
Editor Z.W. Kundzewicz; Associate editor A. Viglione  相似文献   

16.
Abstract

The water resources of the Juba and Shabelle rivers in southern Somalia are important for irrigation and food production, but are influenced by seasonal floods. Prior to the outbreak of civil war in 1991, the Somali Ministry of Agriculture successfully operated a hydrometric network covering the Juba and the Shabelle, data from which provided input to a flow forecasting model. The war resulted in the neglect and abandonment of monitoring stations and an enforced cessation of data collection and management. In 2001 and 2002, part of the pre-war hydrometric network was reinstated and water levels were again recorded at some stations. This paper examines the implications of the 11-year hiatus in data collection, and the now much reduced monitoring network, for assessing and managing the surface water resources. The problems faced have relevance to other basins, within Africa and elsewhere, where there has been a similar decline in data collection.

Citation Houghton-Carr, H. A., Print, C. R., Fry, M. J., Gadain, H. & Muchiri, P. (2011) An assessment of the surface water resources of the Juba-Shabelle basin in southern Somalia. Hydrol. Sci. J. 56(5), 759–774.  相似文献   

17.
Abstract

The runoffs at four Ivory Coast hydrometric stations (monitoring flows from an area covering between 5930 and 66500 km2) were analysed with a set of statistical methods for the detection of breaks in the time series. The variables studied were the annual mean discharge and some characteristic discharges. From a quantitative standpoint, the existence of a clear break in the series of annual mean discharges at the beginning of the decade from 1970, the date from which the runoffs decrease significantly, was noted. A more qualitative study of the results showed that low flows were more affected than high flows by this variability of the regime. This fluctuation appears to be in accord with the drought phenomena observed during the same period in the Sahel, to the north of Ivory Coast.  相似文献   

18.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

19.
In this research, a dynamic linear spatio-temporal model (DLSTM) was developed and evaluated for monthly streamflow forecasting. For parameter estimation, coupled expectation–maximization (EM) algorithm and Kalman filter was adopted. This combination enables the model to estimate the state vector and parameters concurrently. Different forecast scenarios including various combinations of upstream stations were considered for downstream station streamflow forecasting. Several statistical criteria, nonparametric and visual tests were used for model evaluation. Results indicated that the spatio-temporal model performed acceptably in almost all scenarios. The dynamic model was able to capitalize on coupled spatial and temporal information provided that there is spatial connectivity in the studied hydrometric stations network. Moreover, threshold level method was used for model evaluation in drought and wet periods. Results indicated that, in validation phase, the model was able to forecast the drought duration and volume deficit/over threshold, although volume deficit/over threshold could not be accurately simulated.  相似文献   

20.
The Guarani Aquifer System (GAS) has been studied since the 1970s, a time frame that coincides with the advent of isotopic techniques in Brazil. The GAS isotope data from many studies are organized in different phases: (a) the advent of isotope techniques, (b) consolidation and new applications, (c) isotope assessments and hydrochemistry evolution, and (d) a roadmap to a new conceptual model. The reasons behind the phases, their methodological approaches, and impacts on the regional flow conceptual models are examined. Starting with local δ2H and δ18O assessments of values for water fingerprinting and estimates of recharge palaeoclimate scenarios, studies evolved to more integrated approaches based on multiple tracers. Stable isotope application techniques were consolidated during the 1980s, when new dating approaches dealing with radiogenic and heavy isotopes were introduced. Through the execution of an international transboundary project, the GAS was studied and extensively sampled for isotopes. These results have triggered wider application of isotope techniques, reflecting also world research trends. Presently, hydrochemical evolution models along flow lines from recharge to discharge areas, across large‐scale tectonic features within the entire sedimentary basin, are being combined with residence time estimates at GAS outcrop areas and deep confined units. In a complex system, it is normal that many, and even contradictory hypotheses are proposed, but isotope techniques provide a unique chance to test them. Stable isotope assessments are still needed near recharge areas, and they can be combined with groundwater classical dating procedures, complemented by newer techniques (3H‐3He, CFCs, and SF6). Recent noble gas sampling and world pioneer analytical efforts focused on the confined units in the GAS will certainly led to new findings on the overall GAS circulation. The objective of this article is to discuss how isotope information can contribute to the evolution of conceptual groundwater flow models for regional continental aquifers, such as the GAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号