首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Abstract

Four different error-forecast updating models are investigated in terms of their capability of providing real-time river flow forecast accuracy superior to that of rainfall-runoff models applied in the simulation (nonupdating) mode. The first and most widely used is the single autoregressive (AR) model, the second being an elaboration of that model, namely the autoregressive-threshold (AR-TS) updating model. A fuzzy autoregressive-threshold (FU-AR-TS) updating model is proposed as the third form of model, the fourth and final error-forecast updating model applied being the artificial neural network (ANN) model. In the application of these four updating models, the lumped soil moisture accounting and routing (SMAR) conceptual model has been selected to simulate the observed discharge series on 11 selected test catchments. As expected, it is found that all of these four updating models are very successful in improving the flow forecast accuracy, when operating in real-time forecasting mode. A less expected, but nonetheless welcome, result is that the three updating models having the most parameters, i.e. AR-TS, FU-AR-TS, and ANN, do not show any considerable advantages in improving the real-time flow forecast efficiency over that of the simple standard AR model. Thus it is recommended that, in the context of real-time river flow forecasting based on error-forecast updating, modellers should continue to use the AR model.  相似文献   

2.
Abstract

Application of the concept of combining the estimated forecast output of different rainfall-runoff models to yield an overall combined estimated output in the context of real-time river flow forecasting is explored. A Real-Time Model Output Combination Method (RTMOCM) is developed, based on the structure of the Linear Transfer Function Model (LTFM) and utilizing the concept of the Weighted Average Method (WAM) for model output combination. A multiple-input single-output form of the LTFM is utilized in the RTMOCM. This form of the LTFM model uses synchronously the daily simulation-mode model-estimated discharge time series of the rainfall-runoff models selected for combination, its inherent updating structure being used for providing updated combined discharge forecasts. The RTMOCM is applied to the daily data of five catchments, using the simulation-mode estimated discharges of three selected rainfall-runoff models, comprising one conceptual model (Soil Moisture Accounting and Routing Procedure—SMAR) and two black-box models (Linear Perturbation Model—LPM and Linearly-Varying Variable Gain Factor Model—LVGFM). In order to get an indication of the accuracy of the updated combined discharge forecasts relative to the updated discharge forecasts of the individual models, the LTFM is also used for updating the simulation-mode discharge time series of each of the three individual models. The results reveal that the updated combined discharge forecasts provided by the RTMOCM, with parameters obtained by linear regression, can improve on the updated discharge forecasts of the individual rainfall-runoff models.  相似文献   

3.
Abstract

A modelling scheme is developed for real-time flood forecasting. It is composed of (a) a rainfall forecasting model, (b) a conceptual rainfall-runoff model, and (c) a stochastic error model of the ARMA family for forecast error correction. Initialization of the rainfall-runoff model is based on running this model on a daily basis for a certain period prior to the flood onset while parameters of the error model are updated through the Recursive Least Squares algorithm. The scheme is suitable for the early stages of operation of flood forecasting systems in the presence of inadequate historical data. A validation framework is set up which simulates real-time flood forecasting conditions. Thus, the effects of the procedures for rainfall-runoff model initialization, forecast error correction and rainfall forecasting are assessed. Two well-known conceptual rainfall-runoff models (the Soil Moisture Accounting model of the US National Weather Service River Forecast Service—SMA-NWSRFS and TANK) together with data from a Greek basin are used for illustration purposes.  相似文献   

4.
Abstract

An updating technique is a tool to update the forecasts of mathematical flood forecasting model based on data observed in real time, and is an important element in a flood forecasting model. An error prediction model based on a fuzzy rule-based method was proposed as the updating technique in this work to improve one- to four-hour-ahead flood forecasts by a model that is composed of the grey rainfall model, the grey rainfall—runoff model and the modified Muskingum flow routing model. The coefficient of efficiency with respect to a benchmark is applied to test the applicability of the proposed fuzzy rule-based method. The analysis reveals that the fuzzy rule-based method can improve flood forecasts one to four hours ahead. The proposed updating technique can mitigate the problem of the phase lag in forecast hydrographs, and especially in forecast hydrographs with longer lead times.  相似文献   

5.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   

6.
Real time updating of rainfall-runoff (RR) models is traditionally performed by state-space formulation in the context of flood forecasting systems. In this paper, however, we examine applicability of generalized likelihood uncertainty estimation (GLUE) approach in real time modification of forecasts. Real time updating and parameter uncertainty analysis was conducted for Abmark catchment, a part of the great Karkheh basin in south west of Iran. A conceptual-distributed RR model, namely ModClark, was used for basin simulation, such that the basin’s hydrograph was determined by the superposition of runoff generated by individual cells in a raster-based discretization. In real time updating of RR model by GLUE method, prior and posterior likelihoods were computed using forecast errors that were obtained from the results of behavioral models and real time recorded discharges. Then, prior and posterior likelihoods were applied to modify forecast confidence limits in each time step. Calibration of parameters was performed using historical data while distribution of parameters was modified in real time based on new data records. Two scenarios of rainfall forecast including prefect-rainfall-forecast and no-rainfall-forecast were assumed in absence of a robust rainfall forecast model in the study catchment. The results demonstrated that GLUE application could offer an acceptable lead time for peak discharge forecast at the expense of high computational demand.  相似文献   

7.
Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the watershed is remarkably improved up to 50% in comparison to the simulations by the individual models. Results indicate that the developed methodology not only provides reliable tools for rainfall and runoff modeling, but also adequate time for incorporating required mitigation measures in dealing with potentially extreme runoff events and flood hazard. Results of this study can be used in identification of the main factors affecting flood hazard analysis.  相似文献   

8.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   

9.
Abstract

There has been a trend in recent years towards the development and popularity of physically-based deterministic models. However, the application of such models is not without difficulties. This paper investigates the usefulness of a conceptual single-event model for simulating floods from catchments covering a wide variety of climatic and physiographic areas. The model has been calibrated on a group of catchments and the calibrated parameter values related to physical catchment indices. The resulting quantitative relationships are assessed with respect to their value for estimating the parameter values of the model when calibration is not possible. The results indicate that the technique is likely to provide flood estimations for medium sized catchments (5–150 km2) that are more reliable than several flood estimation methods currently in use in South Africa.  相似文献   

10.
《水文科学杂志》2013,58(4):511-524
Abstract

The design and operation of flood management systems require computation of flood hydrographs for both design floods and flood forecasting purposes, since observed data are usually inadequate for these tasks. This is particularly relevant for most developing countries, i.e. mainly for tropical catchments. One possible way of obtaining information about flood hydrographs is through the use of rainfall—runoff models. Two such models, namely the Bochum model and the Nash Cascade—Diskin Infiltration model, which are semi-distributed and lumped models, respectively, were used in the present study. These models were applied to two catchments in Kenya with drainage areas of 6.71 km2 and 26.03 km2. A set of 13 selected rainfall—runoff events was used to calibrate and validate the models. The physical parameters required by the models were derived from catchment characteristics using GIS and remote sensing data while the conceptual parameters were obtained by optimization. The flood hydrographs simulated using the parameters so derived indicated that it is possible to use the two models in this tropical environment.  相似文献   

11.
Seasonal forecasting can be highly valuable for water resources management. Hydrological models (either lumped conceptual rainfall-runoff models or physically based distributed models) can be used to simulate streamflows and update catchment conditions (e.g. soil moisture status) using rainfall records and other catchment data. However, in order to use any hydrological model for skillful seasonal forecasting, rainfall forecast at relevant spatial and/or temporal scales is required. Together with downscaling, general circulation models are probably the only tools for making such seasonal predictions. The Predictive Ocean Atmosphere Model for Australia (POAMA) is a state-of-the-art seasonal climate forecast system developed by the Australian Bureau of Meteorology. Based on the preliminary assessment on the performance of existing statistical downscaling methods used in Australia, this paper is devoted to develop an analogue downscaling method by modifying the Euclidian distance in the selection of similar weather pattern. Such a modification consists of multivariate Box–Cox transformation and then standardization to make the resulted POAMA and observed climate pattern more similar. For the predictors used in Timbal and Fernadez (CAWCR Technical Report No. 004, 2008), we also considered whether the POAMA precipitation provides useful information in the analogue method. Using the high quality station data in the Murray Darling Basin of Australia, we found that the modified analogue method has potential to improve the seasonal precipitation forecast using POAMA outputs. Finally, we found that in the analogue method, the precipitation from POAMA should not be used in the calculation of similarity. The findings would then help to improve the seasonal forecast of streamflows in Australia.  相似文献   

12.
Abstract

There is a lack of consistency and generality in assessing the performance of hydrological data-driven forecasting models, and this paper presents a new measure for evaluating that performance. Despite the fact that the objectives of hydrological data-driven forecasting models differ from those of the conventional hydrological simulation models, criteria designed to evaluate the latter models have been used until now to assess the performance of the former. Thus, the objectives of this paper are, firstly, to examine the limitations in applying conventional methods for evaluating the data-driven forecasting model performance, and, secondly, to present new performance evaluation methods that can be used to evaluate hydrological data-driven forecasting models with consistency and objectivity. The relative correlation coefficient (RCC) is used to estimate the forecasting efficiency relative to the naïve model (unchanged situation) in data-driven forecasting. A case study with 12 artificial data sets was performed to assess the evaluation measures of Persistence Index (PI), Nash-Sutcliffe coefficient of efficiency (NSC) and RCC. In particular, for six of the data sets with strong persistence and autocorrelation coefficients of 0.966–0.713 at correlation coefficients of 0.977–0.989, the PIs varied markedly from 0.368 to 0.930 and the NSCs were almost constant in the range 0.943–0.972, irrespective of the autocorrelation coefficients and correlation coefficients. However, the RCCs represented an increase of forecasting efficiency from 2.1% to 37.8% according to the persistence. The study results show that RCC is more useful than conventional evaluation methods as the latter do not provide a metric rating of model improvement relative to naïve models in data-driven forecasting.

Editor D. Koutsoyiannis, Associate editor D. Yang

Citation Hwang, S.H., Ham, D.H., and Kim, J.H., 2012. A new measure for assessing the efficiency of hydrological data-driven forecasting models. Hydrological Sciences Journal, 57 (7), 1257–1274.  相似文献   

13.
Abstract

Rainfall-runoff models are used to describe the hydrological behaviour of a river catchment. Many different models exist to simulate the physical processes of the relationship between precipitation and runoff. Some of them are based on simple and easy-to-handle concepts, others on highly sophisticated physical and mathematical approaches that require extreme effort in data input and handling. Recently, mathematical methods using linguistic variables, rather than conventional numerical variables applied extensively in other disciplines, are encroaching in hydrological studies. Among these is the application of a fuzzy rule-based modelling. In this paper an attempt was made to develop fuzzy rule-based routines to simulate the different processes involved in the generation of runoff from precipitation. These routines were implemented within a conceptual, modular, and semi-distributed model-the HBV model. The investigation involved determining which modules of this model could be replaced by the new approach and the necessary input data were identified. A fuzzy rule-based routine was then developed for each of the modules selected, and application and validation of the model was done on a rainfall-runoff analysis of the Neckar River catchment, in southwest Germany.  相似文献   

14.
This paper presented a new classified real-time flood forecasting framework by integrating a fuzzy clustering model and neural network with a conceptual hydrological model. A fuzzy clustering model was used to classify historical floods in terms of flood peak and runoff depth, and the conceptual hydrological model was calibrated for each class of floods. A back-propagation (BP) neural network was trained by using real-time rainfall data and outputs from the fuzzy clustering model. BP neural network provided a rapid on-line classification for real-time flood events. Based on the on-line classification, an appropriate parameter set of hydrological model was automatically chosen to produce real-time flood forecasting. Different parameter sets was continuously used in the flood forecasting process because of the changes of real-time rainfall data and on-line classification results. The proposed methodology was applied to a large catchment in Liaoning province, China. Results show that the classified framework provided a more accurate prediction than the traditional non-classified method. Furthermore, the effects of different index weights in fuzzy clustering were also discussed.  相似文献   

15.
Abstract

The physically-based flood frequency models use readily available rainfall data and catchment characteristics to derive the flood frequency distribution. In the present study, a new physically-based flood frequency distribution has been developed. This model uses bivariate exponential distribution for rainfall intensity and duration, and the Soil Conservation Service-Curve Number (SCS-CN) method for deriving the probability density function (pdf) of effective rainfall. The effective rainfall-runoff model is based on kinematic-wave theory. The results of application of this derived model to three Indian basins indicate that the model is a useful alternative for estimating flood flow quantiles at ungauged sites.  相似文献   

16.
通过利用实时水文观测数据对洪水预报模型进行校正,可增加流域洪水预报的实时性和精确度.本文讨论了水文模型状态变量选取对滤波效果的影响,并给出了状态变量选取原则.在集总式新安江模型的基础上,结合状态变量选取原则,应用无迹卡尔曼滤波技术构建了新安江模型的实时校正方法.方法应用于闽江邵武流域洪水预报的计算结果表明,采用无迹卡尔曼滤波方法后,不仅能够直接校正模型状态,同时也能有效地提高模型预报精度,适合应用于实际流域洪水预报作业中.  相似文献   

17.
Abstract

In any dam siting study in arid regions, rainfall records, runoff measurements and their greatest magnitudes are very important. Unfortunately, the data are scarce and, therefore, empirical approaches and charts obtained from similar regions in other parts of the world are necessary for complete applications. The lack of observed data presents the major problem for runoff modelling in arid regions. These regions have characteristically high rainfall intensity and consequent flash floods with large amounts of sediments. Occurrence of rainfall is sporadic, both temporally and spatially, which makes the interpretation of the rainfall-runoff relationship quite difficult. Flood estimations play a significant role in dam siting from the point of view of water availability. This paper presents the basic calculations of floods and sediment amounts that are necessary in dam siting and construction in an arid area by considering the southwestern part of the Kingdom of Saudi Arabia.  相似文献   

18.
The objective of the study is to evaluate the potential of a data assimilation system for real-time flash flood forecasting over small watersheds by updating model states. To this end, the Ensemble Square-Root-Filter (EnSRF) based on the Ensemble Kalman Filter (EnKF) technique was coupled to a widely used conceptual rainfall-runoff model called HyMOD. Two small watersheds susceptible to flash flooding from America and China were selected in this study. The modeling and observational errors were considered in the framework of data assimilation, followed by an ensemble size sensitivity experiment. Once the appropriate model error and ensemble size was determined, a simulation study focused on the performance of a data assimilation system, based on the correlation between streamflow observation and model states, was conducted. The EnSRF method was implemented within HyMOD and results for flash flood forecasting were analyzed, where the calibrated streamflow simulation without state updating was treated as the benchmark or nature run. Results for twenty-four flash-flood events in total from the two watersheds indicated that the data assimilation approach effectively improved the predictions of peak flows and the hydrographs in general. This study demonstrated the benefit and efficiency of implementing data assimilation into a hydrological model to improve flash flood forecasting over small, instrumented basins with potential application to real-time alert systems.  相似文献   

19.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

20.
ABSTRACT

In this study, a data-driven streamflow forecasting model is developed, in which appropriate model inputs are selected using a binary genetic algorithm (GA). The process involves using a combination of a GA input selection method and two adaptive neuro-fuzzy inference systems (ANFIS): subtractive (Sub)-ANFIS and fuzzy C-means (FCM)-ANFIS. Moreover, the application of wavelet transforms coupled with these models is tested. Long-term data for the Lighvan and Ajichai basins in Iran are used to develop the models. The results indicate considerable improvements when GA selection and wavelet methods are used in both models. For example, the Nash-Sutcliffe efficiency (NSE) coefficient for Lighvan using FCM-ANFIS is 0.74. However, when GA selection is applied, the NSE is improved to 0.85. Moreover, when the wavelet method is added, the performance of new hybrid models shows noticeable enhancements. The NSE value of wavelet-FCM-ANFIS is improved to 0.97 for Lighvan basin.
Editor D. Koutsoyiannis Associate editor E. Toth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号