首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(5):974-991
Abstract

The aim is to build a seasonal flood frequency analysis model and estimate seasonal design floods. The importance of seasonal flood frequency analysis and the advantages of considering seasonal design floods in the derivation of reservoir planning and operating rules are discussed, recognising that seasonal flood frequency models have been in use for over 30 years. A set of non-identical models with non-constant parameters is proposed and developed to describe flows that reflect seasonal flood variation. The peak-over-threshold (POT) sampling method was used, as it is considered to provide significantly more information on flood seasonality than annual maximum (AM) sampling and has better performance in flood seasonality estimation. The number of exceedences is assumed to follow the Poisson distribution (Po), while the peak exceedences are described by the exponential (Ex) and generalized Pareto (GP) distributions and a combination of both, resulting in three models, viz. Po-Ex, Po-GP and Po-Ex/GP. Their performances are analysed and compared. The Geheyan and the Baiyunshan reservoirs were chosen for the case study. The application and statistical experiment results show that each model has its merits and that the Po-Ex/GP model performs best. Use of the Po-Ex/GP model is recommended in seasonal flood frequency analysis for the purpose of deriving reservoir operation rules.  相似文献   

2.
《水文科学杂志》2012,57(15):1867-1892
ABSTRACT

The flood peak is the dominating characteristic in nearly all flood-statistical analyses. Contrary to the general assumptions of design flood estimation, the peak is not closely related to other flood characteristics. Differentiation of floods into types provides a more realistic view. Often different parts of the probability distribution function of annual flood peaks are dominated by different flood types, which raises the question how shifts in flood regimes would modify the statistics of annual maxima. To answer this, a distinction into five flood types is proposed; then, temporal changes in flood-type frequencies are investigated. We show that the frequency of floods caused by heavy rain has increased significantly in recent years. A statistical model is developed that simulates peaks for each event type by type-specific peak–volume relationships. In a simulation study, we show how changes in frequency of flood event type lead to changes in the quantiles of annual maximum series.  相似文献   

3.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

4.
A stochastic model based on the renewal process was developed and used to analyse the characteristics of floods: the volume exceedence, the duration of the flood and the maximum annual flow. The model contains a method for determination of total annual volume exceedence and total annual duration of floods, as well as a method for calculation of maximum annual exceedence, maximum flood duration and maximum flow. The subset of the flood occurrence number in a given time interval is common for all analysed phenomena (volume exceedence, flood duration, maximum flow). The subset of given exceedences is common for total annual volume exceedence, as well as for maximum annual volume exceedence. The same holds for durations of individual floods. The model was then applied to analyse the floods on the Drina River at the Paunci hydrological station and on the Danube River at the Bezdan station.  相似文献   

5.
Abstract

The seasonal flood-limited water level (FLWL), which reflects the seasonal flood information, plays an important role in governing the trade-off between reservoir flood control and conservation. A risk analysis model for flood control operation of seasonal FLWL incorporating the inflow forecasting error was proposed and developed. The variable kernel estimation is implemented for deriving the inflow forecasting error density. The synthetic inflow incorporating forecasting error is simulated by Monte Carlo simulation (MCS) according to the inflow forecasting error density. The risk analysis for seasonal FLWL control was estimated by MCS based on a combination of the forecasting inflow lead-time, seasonal design flood hydrographs and seasonal operation rules. The Three Gorges reservoir is selected as a case study. The application results indicate that the seasonal FLWL control can effectively enhance flood water utilization rate without lowering the annual flood control standard.
Editor D. Koutsoyiannis; Associate editor A. Viglione

Citation Zhou, Y.-L. and Guo, S.-L., 2014. Risk analysis for flood control operation of seasonal flood-limited water level incorporating inflow forecasting error. Hydrological Sciences Journal, 59 (5), 1006–1019.  相似文献   

6.
Abstract

Abstract A parameter estimation method is proposed for fitting the generalized extreme value (GEV) distribution to censored flood samples. Partial L-moments (PL-moments), which are variants of L-moments and analogous to ?partial probability weighted moments?, are defined for the analysis of such flood samples. Expressions are derived to calculate PL-moments directly from uncensored annual floods, and to fit the parameters of the GEV distribution using PL-moments. Results of Monte Carlo simulation study show that sampling properties of PL-moments, with censoring flood samples of up to 30% are similar to those of simple L-moments, and also that both PL-moment and LH-moments (higher-order L-moments) have similar sampling properties. Finally, simple L-moments, LH-moments, and PL-moments are used to fit the GEV distribution to 75 annual maximum flow series of Nepalese and Irish catchments, and it is found that, in some situations, both LH- and PL-moments can produce a better fit to the larger flow values than simple L-moments.  相似文献   

7.
Abstract

Flood frequency analysis can be made by using two types of flood peak series, i.e. the annual maximum (AM) and peaks-over-threshold (POT) series. This study presents a comparison of the results of both methods for data from the Litija 1 gauging station on the Sava River in Slovenia. Six commonly used distribution functions and three different parameter estimation techniques were considered in the AM analyses. The results showed a better performance for the method of L-moments (ML) when compared with the conventional moments and maximum likelihood estimation. The combination of the ML and the log-Pearson type 3 distribution gave the best results of all the considered AM cases. The POT method gave better results than the AM method. The binomial distribution did not offer any noticeable improvement over the Poisson distribution for modelling the annual number of exceedences above the threshold.
Editor D. Koutsoyiannis

Citation Bezak, N., Brilly, M., and ?raj, M., 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal, 59 (5), 959–977.  相似文献   

8.
Abstract

A procedure to identify sets of operational rules for gated spillways for optimal flood routing management of artificial reservoirs is proposed. The flood retention storage of a dam having a gated flood spillway is divided into 15 sub-storages whose surface elevations are identified as critical levels. The most suitable operation set for the downstream conditions and for the dam can be chosen from many derived operation sets. The spillway gates are operated in an optimum way for any floods from very small magnitudes to the probable maximum flood (PMF), without having to forecast the actual magnitude of the incoming flood hydrograph. Decision floods are formed by dividing the PMF into 15 sub-hydrographs by 5 and 10% increments in the ranges 5–50% and 50–100% of the PMF, respectively. Many potential spillway gate openings from closed to fully open are chosen initially. As a result of a series of routing simulations of 15 decision floods, a set of 15 gate openings is determined such that all floods from very small magnitudes to the PMF may be routed without overtopping the dam crest. Next, a few more 15-stage operation rules are determined such that the gate openings of the initial stages are decreased as their critical levels are increased stepwise, with the objective of attenuating smaller floods more effectively and releasing higher outflows for larger floods close to and including the PMF. The developed model is applied to the Catalan and Aslantas dams in Turkey, both of which serve for flood mitigation as well as hydropower generation.

Citation Haktanir, T., Citakoglu, H., and Acanal, N., 2013. Fifteen-stage operation of gated spillways for flood routing management through artificial reservoirs. Hydrological Sciences Journal, 58 (5), 1013–1031.

Editor Z.W. Kundzewicz; Associate editor A. Montanari  相似文献   

9.
10.
If the maximum annual peak flow series are a mixture of summer and winter flows, a seasonal approach to flood frequency analysis is necessary. While considering seasonal maxima as mutually independent events, the annual maxima distribution is defined as the product of seasonal distributions. However, if the independency assumption does not hold, a bivariate approach with dependent margins should be applied, i.e. the copula approach. The impact of dependency on design quantiles is investigated here in the context of the Fréchet-Hoeffding inequality defining copula bounds and the definition of dependency. The results of the two approaches are compared using six catchments in the San River basin, where in four cases the dependency of seasonal maxima has been identified as positive significant and no strong dominance of any one season is observed. The product model leads to higher estimates of design quantiles than do models where the dependency is taken into account and, therefore, is safe.
EDITOR R. Woods ASSOCIATE EDITOR A. Fiori  相似文献   

11.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   

12.
The annual peak flow series of Polish rivers are mixtures of summer and winter flows. As Part II of a sequence of two papers, practical aspects of applicability of seasonal approach to flood frequency analysis (FFA) of Polish rivers are discussed. Taking A Two‐Component Extreme Value (TCEV1) model as an example it was shown in the first part that regardless of estimation method, the seasonal approach can give profit in terms of upper quantile estimation accuracy that rises with the return period of the quantile and is the greatest for no seasonal variation. In this part, an assessment of annual maxima (AM) versus seasonal maxima (SM) approach to FFA was carried out with respect to seasonal and annual peak flow series of 38 Polish gauging stations. First, the assumption of mutual independence of the seasonal maxima has been tested. The smoothness of SM and AM empirical probability distribution functions was analysed and compared. The TCEV1 model with seasonally estimated parameters was found to be not appropriate for most Polish data as it considerably underrates the skewness of AM distributions and upper quantile values as well. Consequently, the discrepancies between the SM and AM estimates of TCEV1 are observed. Taking SM and TCEV1 distribution, the dominating season in AM series was confronted with predominant season for extreme floods. The key argument for presumptive superiority of SM approach that SM samples are more statistically homogeneous than AM samples has not been confirmed by the data. An analysis of fitness to SM and AM of Polish datasets made for seven distributions pointed to Pearson (3) distribution as the best for AM and Summer Maxima, whereas it was impossible to select a single best model for winter samples. In the multi‐model approach to FFA, the tree functions, i.e., Pe(3), CD3 and LN3, should be involved for both SM and AM. As the case study, Warsaw gauge on the Vistula River was selected. While most of AM elements are here from winter season, the prevailing majority of extreme annual floods are the summer maxima. The upper quantile estimates got by means of classical annual and two‐season methods happen to be fairly close; what's more they are nearly equal to the quantiles calculated just for the season of dominating extreme floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Maximum observed floods (MOF) and their envelope curves are useful to hydrological engineers when estimating probable maximum floods or design floods. The World MOF and its envelope curve were developed originally in 1967 and modified in 2009 by our team. Based on MOF concepts and observed hydrological data in China, the China MOF and its envelope curve are presented, and their characteristics analysed. The results will be useful for flood design, for example for dam spillways, in China and in similar regions, in particular where no data are available, but cannot be used without modification and comparative analyses.

Editor Z.W. Kundzewicz

Citation Li, C., Wang, G., and Li, R., 2013. Maximum observed floods in China. Hydrological Sciences Journal, 58 (3), 728–735.  相似文献   

14.
Abstract

A global flood risk index (FRI) is established, based on both natural and social factors. The advanced flood risk index (AFRI) is the expectation of damage in the case of a single flood occurrence, estimated by a linear regression-based approach as a function of hazard and vulnerability metrics. The resulting equations are used to predict potential flood damage given gridded global data for independent variables. It is new in the aspect that it targets floods by units of events, instead of a long-term trend. Moreover, the value of the AFRI is that it can express relative potential flood risk with the process of flood damage occurrence considered. The significance of this study is that not only the hazard parameters which contribute directly to flood occurrence, but vulnerability parameters which reflect the conditions of the region where flood occurred, including its residential and social characteristics, were shown quantitatively to affect flood damage.

Citation Okazawa, Y., Yeh, P., Kanae, S. & Oki, T. (2011) Development of a global flood risk index based on natural and socioeconomic factors. Hydrol. Sci. J. 56(5), 789–804.  相似文献   

15.
《水文科学杂志》2013,58(3):550-567
Abstract

The multivariate extension of the logistic model with generalized extreme value (GEV) marginals is applied to provide a regional at-site flood estimate. The maximum likelihood estimators of the parameters were obtained numerically by using a multivariable constrained optimization algorithm. The asymptotic results were checked by distribution sampling techniques in order to establish whether or not those results can be utilized for small samples. A region in northern Mexico with 21 gauging stations was selected to apply the model. Results were compared with those obtained by the most popular univariate distributions, the bivariate approach of the logistic model and three regional methods: station-year, index flood and L-moments. These show that there is a reduction in the standard error of fit when estimating the parameters of the marginal distribution with the trivariate distribution instead of its univariate and bivariate counterpart, and differences between at-site and regional at-site design events can be significant as return period increases.  相似文献   

16.
Spatial and seasonal patterns of flood change across Brazil   总被引:1,自引:1,他引:0  
Brazil has some of the largest rivers in the world and has the second greatest flood loss potential among the emergent countries. Despite that, flood studies in this area are still scarce. In this paper, we used flood seasonality and trend analysis at the annual and seasonal scales in order to describe flood regimes and changes across the whole of Brazil in the period 1976–2015. We identified a strong seasonality of floods and a well-defined spatio-temporal pattern for flood occurrence. There are positive trends in the frequency and magnitude of floods in the North, South and parts of Southeast Brazil; and negative trends in the North-east and the remainder of Southeast Brazil. Trends in the magnitude (frequency) were predominant in the winter (summer). Overall, floods are becoming more frequent and intense in Brazilian regions characterized by wet conditions, and less frequent and intense in drier regions.  相似文献   

17.
Abstract

The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms.
Editor Z.W. Kundzewicz  相似文献   

18.
Abstract

The estimation and review of discharge flow rates in hydraulic works is a fundamental problem in water management. In the case of dams with large regulating capacity, in order to estimate return periods of discharge flow rates from the spillways, it becomes necessary to consider both peak flow and volume of the incoming floods. In this paper, the results of the validation for several methods of assessing design floods for spillways of dams with a large flood control capacity are presented; the validation is performed by comparing the maximum outflows (or the maximum levels reached in the reservoir) obtained from the routing of the design floods with those obtained from the routing of the historical annual maximum floods. The basin of Malpaso Dam, Mexico, is used as the case study.

Editor D. Koutsoyiannis

Citation Domínguez, M.R. and Arganis, J.M.L., 2012. Validation of methods to estimate design discharge flow rates for dam spillways with large regulating capacity. Hydrological Sciences Journal, 57 (3), 460–478.  相似文献   

19.
Abstract

The exact distribution of the ratio of any magnitude to the sum of all magnitudes in an annual flood series satisfying the usual distribution-free assumptions of independence and identical distribution, and the additional parametric assumption of exponential tail behaviour with truncation, is shown to be a beta distribution of the first kind. A two-parameter linear transformation of the beta distribution completes the derivation and yields a Wakeby distribution which has the number of members in a series as a given parameter. The Wakeby distribution is developed to illustrate how, in principle, some perceived deficiencies in current flood frequency analysis may be met: more complex parametric assumptions should lead to distributions of wider application. In particular, the distribution has a secure theoretical basis and is hydrologically more realistic because it bounds the variate and requires the definition of a temporally finite annual series. Analytical expressions are obtained for estimating the two distribution parameters; the quantite standard error and a plotting rule. An example is given of the application of the distribution to the design flood problem and an annual flood series is modelled. It is further suggested that a suitable design value for the largest flood to be withstood by a protection work is a statistic of the largest flood occurring during its lifetime. For the derived Wakeby distribution this criterion specifies risk and probability of non-exceedance of the design flood once a lifetime is selected.  相似文献   

20.
The annual peak flow series of the Polish rivers are mixtures of summer and winter flows. In the Part I of a sequence of two papers, theoretical aspects of applicability of seasonal approach to flood frequency analysis (FFA) in Poland are discussed. A testing procedure is introduced for the seasonal model and the data overall fitness. Conditions for objective comparative assessment of accuracy of annual maxima (AM) and seasonal maxima (SM) approaches to FFA are formulated and finally Gumbel (EV1) distribution is chosen as seasonal distribution for detailed investigation. Sampling properties of AM quantile x(F) estimates are analysed and compared for the SM and AM models for equal seasonal variances. For this purpose, four estimation methods were used, employing both asymptotic approach and sampling experiments. Superiority of the SM over AM approach is stated evident in the upper quantile range, particularly for the case of no seasonal variation in the parameters of Gumbel distribution. In order to learn whether the standard two‐ and three‐parameter flood frequency distributions can be used to model the samples generated from the Two‐Component Extreme Value 1 (TCEV1) distribution, the shape of TCEV1 probability density function (PDF) has been tested in terms of bi‐modality. Then the use of upper quantile estimate obtained from the dominant season of extreme floods (DEFS) as AM upper quantile estimate is studied and respective systematic error is assessed. The second part of the paper deals with advantages and disadvantages of SM and AM approach when applied to real flow data of Polish rivers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号