首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

2.
ABSTRACT

A set of linked optimization models was used to evaluate planning and operation of the proposed Pamba-Achankovil-Vaippar (PAV) water transfer project in India. The shortage of water for irrigation in the Vaippar basin has led to the need for water import. The project consists of three reservoirs. The models were applied at three levels. At Level-1, the projections of water requirement for irrigation in the Vaippar basin at Reservoir-1 were estimated using an LP model. Level-2 was operated at three sub-levels: the first was the determination of the export requirements from the Pamba basin (Reservoir-2) to the Achankovil basin (Reservoir-1); the second was determining the capability of Reservoir-2 to export and sizing of the three reservoirs to meet the above targets was the third sub-level. Integrated reservoir operation and canal irrigation water distribution were done at Level-3. DP models were employed at levels-2 and 3. The linked LP, DP and simulation models were found effective for planning water transfers.  相似文献   

3.
《水文科学杂志》2013,58(2):457-465
Abstract

Periodicity of the runoff and the sediment load, and possible impacts from human activities and climatic changes, in the Yangtze River basin during 1963–2004 are discussed based on the monthly sediment and runoff data, and using the wavelet approach. Research results indicated that: (a) Sediment load changes are severely impacted by the different types of human activity (e.g. construction of water reservoirs, deforestation/afforestation); and the runoff variability is the direct result of climatic changes, e.g. the precipitation changes. (b) The impacts of human activity and climatic changes on the sediment load and runoff changes are greater in smaller river basins (e.g. the Jialingjiang River basin) than in larger river basins. The response of sediment load and runoff changes to the impacts of human activities and climatic changes are prompt and prominent in the Jialingjiang River basin relative to those in the mainstem of the Yangtze River basin. (c) Construction of the Three Gorges Dam has already had obvious impacts on the sediment transport process in the middle and lower Yangtze River basin, but shows no obvious influence on the runoff changes. Construction of the Three Gorges Dam will result in further re-adjustment of the scouring/filling process within the river channel in the middle and lower Yangtze River basin, and have corresponding effects on the altered sediment load because of the Dam's operation for the river channel, ecology, sustainable social economy and even the development of the Yangtze Delta. This will be of concern to local governments and policy makers.  相似文献   

4.
Abstract

Conceptual semi-distributed hydrological models are developed for a limited consideration of spatial heterogeneity of hydrological characteristics within a river basin. This heterogeneity can be described by area distribution functions of hydrological characteristics which can be estimated in a most effective way by a Geographical Information System (GIS). It is shown how the application of a GIS can support the development and the calibration of a conceptual hydrological model. GIS information is used to establish the criteria for sub-division of the river basin and for estimation of model structures (especially for further horizontal divisions of each basin into more homogeneous parts). That information is also used for estimation of basin characteristics and their differences between sub-basins as a support for parameter calibration by optimization. The methodology presented can be used for the development of a model structure on an objective basis and for model calibration which considers the physical explanation of model parameters. The proposed method was successfully applied to a river basin within the Mosel basin (Germany).  相似文献   

5.
Abstract

Quantifying the reliability of distributed hydrological models is an important task in hydrology to understand their ability to estimate energy and water fluxes at the agricultural district scale as well the basin scale for water resources management in drought monitoring and flood forecasting. In this context, the paper presents an intercomparison of simulated representative equilibrium temperature (RET) derived from a distributed energy water balance model and remotely-sensed land surface temperature (LST) at spatial scales from the agricultural field to the river basin. The main objective of the study is to evaluate the use of LST retrieved from operational remote sensing data at different spatial and temporal resolutions for the internal validation of a distributed hydrological model to control its mass balance accuracy as a complementary method to traditional calibration with discharge measurements at control river cross-sections. Modelled and observed LST from different radiometric sensors located on the ground surface, on an aeroplane and a satellite are compared for a maize field in Landriano (Italy), the agricultural district of Barrax (Spain) and the Upper Po River basin (Italy). A good ability of the model in reproducing the observed LST values in terms of mean bias error, root mean square error, relative error and Nash-Sutcliffe index is shown.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

6.
Reservoirs are man‐made lakes that severely impact on river ecosystems, and in addition, the new lake ecosystem can be damaged by several processes. Thus, the benefits of a reservoir, including energy production and flood control, must be measured against their impact on nature. New investigations point out that shallow and tropical reservoirs have high emission rates of the greenhouse gases CO2 and CH4. The methane emissions contribute strongly to climate change because CH4 has a 25 times higher global warming potential than CO2. The pathways for its production include ebullition, diffuse emission via the water‐air interface, and degassing in turbines and downstream of the reservoir in the spillway and the initial river stretch. Greenhouse gas emissions are promoted by a eutrophic state of the reservoir, and, with higher trophic levels, anaerobic conditions occur with the emission of CH4. This means that a qualitative and quantitative jump in greenhouse gas emissions takes place. Available data from Petit Saut, French Guinea, provides a first quantification of these pathways. A simple evaluation of the global warming potential of a reservoir can be undertaken using the energy density, the ratio of the reservoir surface and the hydropower capacity; this parameter is mainly determined by the reservoir's morphometry but not by the hydropower capacity. Energy densities of some reservoirs are given and it is clearly seen that some reservoirs have a global warming potential higher than that of coal use for energy production.  相似文献   

7.
Abstract

Important characteristics of an appropriate river basin model, intended to study the effect of climate change on basin response, are the spatial and temporal resolution of the model and the rainfall input. The effects of input and model resolution on extreme discharge of a large river basin are assessed to give some indication on appropriate resolutions. A simple stochastic rainfall model and a river basin model with uniform parameters and multiple rainfall input have been developed and applied to the River Meuse basin in northwestern Europe. The results show that the effect of model resolution on extreme river discharge is much greater than that of input resolution. The highest model resolution seems to be quite accurate in determining extreme discharge. Although the results should be interpreted with caution, they may give some indication of appropriate input and model resolutions for the determination of extreme discharge of a large river basin.  相似文献   

8.
ABSTRACT

A well marked low pressure monsoon depression caused unprecedented heavy rainfall of five days duration (15–19 July 1979) in the Luni basin in the India arid zone. It caused the worst flash flood in living memory. Saturated antecedent soil moisture conditions, thin soil cover underlain by bed rock or hardpan, a larger area of exposed rocks in the basin and failure of the earthen reservoirs further worsened the flood effect. During flooding, suspended sediment concentrations rose from 0.86 to 40.2 g 1?1 downstream due to bank scouring, erosion and high transmission losses of the runoff volume in the alluvial channels. The dilution effect of flooding caused lower concentrations of the total dissolved solids which increased with downstream travel. Social effects of this flood and consequences on future planning in the Luni basin have also been discussed.  相似文献   

9.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

10.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

11.
Lishan Ran  X. X. Lu 《水文研究》2012,26(8):1215-1229
Reservoirs are an integral component of water resources planning and management. Periodic and accurate assessment of the water storage change in reservoirs is an extraordinarily important aspect for better watershed management and water resources development. In view of the shortcomings of conventional approaches in locating reservoirs' spatial location and quantifying their storage, the remote sensing technique has several advantages, either for a single reservoir or for a group of reservoirs. The satellite‐based remote sensing data, encompassing spatial, spectral and temporal attributes, can provide high‐resolution synoptic and repetitive information with short time intervals on a large scale. Using remote sensing images in conjunction with Google Earth and field check of representative reservoirs, the spatial distribution of constructed reservoirs in the Yellow River basin was delineated, and their storage volume and the residence time of the stored water were estimated. The results showed that 2816 reservoirs were extracted from the images, accounting for 89·5% of the registered total. All large‐ and medium‐sized reservoirs were extracted while small reservoirs may not be extracted due to coarse resolution and cloud‐cover shadows. An empirical relationship between the extracted water surface area and the compiled storage capacity of representative reservoirs was developed. The water storage capacity was estimated to be 66·71 km3, about 92·7% of the total storage capacity reported by the authority. Furthermore, the basin was divided into 10 sub‐basins upon which the water's residence time was analysed. The water discharge in the basin has been greatly regulated. The residence time has surged to 3·97 years in recent years, ranking the Yellow River in the top three of the list in terms of residence time and flow regulation among large river systems in the world. It is expected that it will be further extended in future owing to decreasing water discharge and increasing reservoir storage capacity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

A snowmelt runoff model is derived for relatively small rivers. The model involves the main components of the catchment water budget, physiographical and some other factors: water equivalent of snow cover, precipitation, antecedent moisture content, daily snowmelt, non-uniformity of snow cover, retention capacity of the basin, and percentage of forest area. The model structure includes calculations of the daily values of snowmelt excess and the transformation of these values into discharges at the outlet of the basin based on meteorological observations and appropriate distribution functions. Both calculations are made separately for open and forest areas. The parameters of the model were derived by optimization methods. The linear model based on the superposition principle is used to transform the discharges of a small river into total inflow into a large reservoir. The combined model was used to forecast for five days in advance daily mean inflows into the Gorky and Kuibyshev reservoirs (on the River Volga), using the observed and forecast discharges of the small rivers as input.  相似文献   

13.
Among the different controls of erosion budget at basin level, the relative impact of dams and land management is yet to be investigated. In this paper, the impact of dams on sediment yield has been assessed by using a conceptual modelling framework which considers the gross erosion and the cascade of dams constructed on a river network. The sediment budget has been estimated based on the gross erosion, deposition of sediment in reservoirs, and sediment yields of 23 mainland river basins of India. The gross erosion of the country is estimated as 5.11 ± 0.4 Gt yr?1 or 1559 t km?2 yr?1, out of which 34.1 ± 12% of the total eroded soil is deposited in the reservoirs, 22.9 ± 29% is discharged outside the country (mainly to oceans), and the remaining 43.0 ± 41% is displaced within the river basins. The river basins of northern India contribute about 81% of the total sediment yield from landmass while the share of southern river basins is 19%. The components of revised sediment budget for India are prominently influenced by the sediment trapped in reservoirs and the treatment of catchment areas by soil and water conservation measures. Analysis of sediment deposition in 4937 reservoirs indicated the average annual percentage capacity loss as 1.04% though it varies from 0.8% to >2% per year in smaller dams (1–50 Mm3 capacity) and from <0.5% to 0.8% per year in larger dams (51 to >1000 Mm3 capacity). Siltation of smaller dams poses a serious threat to their ecosystem services as they cater to a wider population for domestic, agricultural, and industrial purposes. Amongst the environment controls, land use significantly impacts the gross erosion rate and specific sediment yield as compared to climatic and topographic parameters. However, to analyse their integrated effect on the complex processes of sediment fluxes in a basin, further research efforts are needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The Soil and Water Integrated Model (SWIM) is a continuous-time semi-distributed ecohydrological model, integrating hydrological processes, vegetation, nutrients and erosion. It was developed for impact assessment at the river basin scale. SWIM is coupled to GIS and has modest data requirements. During the last decade SWIM was extensively tested in mesoscale and large catchments for hydrological processes (discharge, groundwater), nutrients, extreme events (floods and low flows), crop yield and erosion. Several modules were developed further (wetlands and snow dynamics) or introduced (glaciers, reservoirs). After validation, SWIM can be applied for impact assessment. Four exemplary studies are presented here, and several questions important to the impact modelling community are discussed. For which processes and areas can the model be used? Where are the limits in model application? How to apply the model in data-poor situations or in ungauged basins? How to use the model in basins subject to strong anthropogenic pressure?
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

15.
Stable water isotope surveys have increasingly been integrated into river basins studies, but fewer have used them to evaluate impact of hydropower regulation. This study applies hydrologic and water isotope survey approaches to a Canadian Shield river basin with both regulated and natural flows. Historical streamflow records were used to evaluate the influence of three hydroelectric reservoirs and unregulated portions of the basin on downstream flows and changes in water level management implemented after an extreme flood year (1979). In 2013, water isotope surveys of surface and source waters (e.g., rainfall, groundwater, snowmelt) were conducted to examine spatial and temporal variation in contributions to river flow. Seasonal changes in relative groundwater contribution were assessed using a water‐isotope mass balance approach. Within the basin, two regulated reservoirs exhibited inverted hydrographs with augmented winter flows, whereas a third exhibited a hydrograph dominated by spring snowmelt. In 2013, spatial variation in rain‐on‐snow and air temperatures resulted in a critical lag in snowmelt initiation in the southern and northern portions of the basin resulting in a dispersed, double peak spring hydrograph, contrasting with 1979 when a combination of rain‐on‐snow and coincident snowmelt led to the highest flood on record. Although eastern basin reservoirs become seasonally enriched in δ18O and δ2H values, unregulated western basin flows remain less variable due to groundwater driven baseflow with increasing influence downstream. Combined analysis of historical streamflow (e.g., flood of 1979, drought of 2010) and the 2013 water isotope surveys illustrate extreme meteorological conditions that current management activities are unable to prevent. In this study, the influence of evaporative fractionation on large surface water reservoirs provides important evidence of streamflow partitioning, illustrating the value of stable water isotope tracers for study of larger catchments.  相似文献   

16.
Abstract

River managers worldwide are increasingly addressing flow needs for ecosystem processes and services in their management plans for dams and reservoirs. However, while planning and scientific assessments have advanced substantially, successful re-operation of infrastructure to achieve environmental benefits has been more limited. The Sustainable Rivers Project (SRP) was formalized in 2002, as a national partnership between the United States Army Corps of Engineers and The Nature Conservancy to define and implement environmental flows through adaptive reservoir management. The project has focused on eight demonstration basins containing 36 Corps dams, but is designed to direct the collective experience from these sites to help guide agency-wide operational changes for as many as 600 dams to benefit up to 80 000 river kilometres and tens of thousands of hectares of related floodplain and estuarine habitat. This article summarizes the progress to date on defining and implementing environmental flows through the SRP, and evaluates the technical, social, legal, and institutional factors that act as dominant enabling conditions and constraints to implementation.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

17.
Abstract

Abstract Water resources in dryland areas are often provided by numerous surface reservoirs. As a basis for securing future water supply, the dynamics of reservoir systems need to be simulated for large river basins, accounting for environmental change and an increasing water demand. For the State of Ceará in semiarid Northeast Brazil, with several thousands of reservoirs, a simple deterministic water balance model is presented. Within a cascade-type approach, the reservoirs are grouped into six classes according to storage capacity, rules for flow routing between reservoirs of different size are defined, and water withdrawal and return flow due to human water use is accounted for. While large uncertainties in model applications exist, particularly in terms of reservoir operation rules, model validation against observed reservoir storage volumes shows that the approach is a reasonable simplification to assess surface water availability in large river basins. The results demonstrate the large impact of reservoir storage on downstream flow and stress the need for a coupled simulation of runoff generation, network redistribution and water use.  相似文献   

18.
Abstract

A theoretical model is described for estimating the impacts of changes in Lake Victoria levels on river flows, lake levels and swamp areas in the upper White Nile basin. The basis of the model is to represent the main river channel by a series of interconnected lakes and swamps, whose water balances are described by differential equations relating outflows to levels, areas and the net basin supply at each point. Closed form solutions are obtained for two situations: (a) a long-term change in the mean level of Lake Victoria, and (b) a return to equilibrium levels following an initial disturbance in Lake Victoria levels. A simple model for the net basin supply to Lake Victoria is also used to relate these changes in levels to changes in climate and runoff in the basin. The results illustrate the extreme sensitivity of White Nile flows to changes in Lake Victoria levels and outflows, and in particular to variations in the direct rainfall on the lake surface. Estimates are also presented for the various time scales and time delays which affect the White Nile system.  相似文献   

19.
ABSTRACT

To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

20.
Abstract

Groundwater of the Tertiary-Quaternary Formations in the Jeloula basin (Central Tunisia), together with rain and surface waters, were analysed to investigate the mineralization processes, the origin of the water and its recharge sources. The water samples present a large spatial variability of chemical facies which is related to their interaction with the geological formations. The main sources of the water mineralization are the dissolution of evaporitic and carbonate minerals and cation exchange reactions. Stable isotopes indicate that most groundwater samples originate from infiltration of modern precipitation. Surface water samples from small dam reservoirs show a 18O/2H enrichment, which is typical of water exposed to open-surface evaporation in a semi-arid region. Considerable data of 3H and 14C allow the qualitative identification of the present-day recharge that is probably supplied by infiltration of recent flood waters in the Wadi El Hamra valley, and by direct infiltration of meteoric water through the local carbonate outcrops.

Editor D. Koutsoyiannis; Associate editor S. Faye  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号