首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   

2.
Adaptive Neuro-Fuzzy Inference System for drought forecasting   总被引:3,自引:2,他引:1  
Drought causes huge losses in agriculture and has many negative influences on natural ecosystems. In this study, the applicability of Adaptive Neuro-Fuzzy Inference System (ANFIS) for drought forecasting and quantitative value of drought indices, the Standardized Precipitation Index (SPI), is investigated. For this aim, 10 rainfall gauging stations located in Central Anatolia, Turkey are selected as study area. Monthly mean rainfall and SPI values are used for constructing the ANFIS forecasting models. For all stations, data sets include a total of 516 data records measured between in 1964 and 2006 years and data sets are divided into two subsets, training and testing. Different ANFIS forecasting models for SPI at time scales 1–12 months were trained and tested. The results of ANFIS forecasting models and observed values are compared and performances of models were evaluated. Moreover, the best fit models have been also trained and tested by Feed Forward Neural Networks (FFNN). The results demonstrate that ANFIS can be successfully applied and provide high accuracy and reliability for drought forecasting.  相似文献   

3.
《水文科学杂志》2013,58(6):1114-1124
Abstract

Droughts may be classified as meteorological, hydrological or agricultural. When meteorological drought appears in a region, agricultural and hydrological droughts follow. In this study, the standardized precipitation index (SPI) was applied for meteorological drought analysis at nine stations located around the Lakes District, Turkey. Analyses were performed on 3-, 6-, 9- and 12-month-long data sets. The SPI drought classifications were modelled by Adaptive Neural-Based Fuzzy Inference System (ANFIS) and Fuzzy Logic, which has the advantage that, in contrast to most of the time series modelling techniques, it does not require the model structure to be known a priori. Comparison of the observed values and the modelling results shows a better agreement with SPI-12 and ANFIS models than with fuzzy logic models.  相似文献   

4.
Drought is one of the most devastating climate disasters. Hence, drought forecasting plays an important role in mitigating some of the adverse effects of drought. Data-driven models are widely used for drought forecasting such as ARIMA model, artificial neural network (ANN) model, wavelet neural network (WANN) model, support vector regression model, grey model and so on. Three data-driven models (ARIMA model; ANN model; WANN model) are used in this study for drought forecasting based on standard precipitation index of two time scales (SPI; SPI-6 and SPI-12). The optimal data-driven model and time scale of SPI are then selected for effective drought forecasting in the North of Haihe River Basin. The effectiveness of the three data-models is compared by Kolmogorov–Smirnov (K–S) test, Kendall rank correlation, and the correlation coefficients (R2). The forecast results shows that the WANN model is more suitable and effective for forecasting SPI-6 and SPI-12 values in the north of Haihe River Basin.  相似文献   

5.
ABSTRACT

Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and random forest (RF) models were used to determine cumulative infiltration and infiltration rate in arid areas in Iran. The input data were sand, clay, silt, density of soil and soil moisture, while the output data were cumulative infiltration and infiltration rate, the latter measured using a double-ring infiltrometer at 16 locations. The results show that SVM with radial basis kernel function better estimated cumulative infiltration (RMSE = 0.2791 cm) compared to the other models. Also, SVM with M4 radial basis kernel function better estimated the infiltration rate (RMSE = 0.0633 cm/h) than the ANFIS and RF models. Thus, SVM was found to be the most suitable model for modelling infiltration in the study area.  相似文献   

6.
Abstract

Abstract The prediction and estimation of suspended sediment concentration are investigated by using multi-layer perceptrons (MLP). The fastest MLP training algorithm, that is the Levenberg-Marquardt algorithm, is used for optimization of the network weights for data from two stations on the Tongue River in Montana, USA. The first part of the study deals with prediction and estimation of upstream and down-stream station sediment data, separately, and the second part focuses on the estimation of downstream suspended sediment data by using data from both stations. In each case, the MLP test results are compared to those of generalized regression neural networks (GRNN), radial basis function (RBF) and multi-linear regression (MLR) for the best-input combinations. Based on the comparisons, it was found that the MLP generally gives better suspended sediment concentration estimates than the other neural network techniques and the conventional statistical method (MLR). However, for the estimation of maximum sediment peak, the RBF was mostly found to be better than the MLP and the other techniques. The results also indicate that the RBF and GRNN may provide better performance than the MLP in the estimation of the total sediment load.  相似文献   

7.
ABSTRACT

An appropriate streamflow forecasting method is a prerequisite for implementation of efficient water resources management in the water-limited, arid regions that occupy much of Iran. In the current research, monthly streamflow forecasting was combined with three data-driven methods based on large input datasets involving 11 precipitation stations, a natural streamflow, and four climate indices through a long period. The major challenges of rainfall–runoff modelling are generally attributed to complex interacting processes, the large number of variables, and strong nonlinearity. The sensitivity of data-driven methods to the dimension of input/output datasets would be another challenge, so large datasets should be compressed into independently standardized principal components. In this study, three pre-processing techniques were applied: singular value decomposition (SVD) provided more efficient forecasts in comparison to principal component analysis (PCA) and average values of inputs in all networks. Among the data-driven methods, the multi-layer perceptron (MLP) with 1-month lag-time outperformed radial basis and fuzzy-based networks. In general, an increase in monthly lag-time of streamflow forecasting resulted in a decline in forecasting accuracy. The results reveal that SVD was highly effective in pre-processing of data-driven evaluations.  相似文献   

8.
The accuracy of Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), wavelet-ANN and wavelet-ANFIS in predicting monthly water salinity levels of northwest Iran’s Aji-Chay River was assessed. The models were calibrated, validated and tested using different subsets of monthly records (October 1983 to September 2011) of individual solute (Ca2+, Mg2+, Na+, SO4 2? and Cl?) concentrations (input parameters, meq L?1), and electrical conductivity-based salinity levels (output parameter, µS cm?1), collected by the East Azarbaijan regional water authority. Based on the statistical criteria of coefficient of determination (R2), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency coefficient (NSC) and threshold statistics (TS) the ANFIS model was found to outperform the ANN model. To develop coupled wavelet-AI models, the original observed data series was decomposed into sub-time series using Daubechies, Symlet or Haar mother wavelets of different lengths (order), each implemented at three levels. To predict salinity input parameter series were used as input variables in different wavelet order/level-AI model combinations. Hybrid wavelet-ANFIS (R2 = 0.9967, NRMSE = 2.9 × 10?5 and NSC = 0.9951) and wavelet-ANN (R2 = 0.996, NRMSE = 3.77 × 10?5 and NSC = 0.9946) models implementing the db4 mother wavelet decomposition outperformed the ANFIS (R2 = 0.9954, NRMSE = 3.77 × 10?5 and NSC = 0.9914) and ANN (R2 = 0.9936, NRMSE = 3.99 × 10?5 and NSC = 0.9903) models.  相似文献   

9.
The creeping characteristics of drought make it possible to mitigate drought’s effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, we proposed a new probabilistic scheme to forecast droughts that used a discrete-time finite state-space hidden Markov model (HMM) aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The standardized precipitation index (SPI) with a 3-month time scale was employed to represent the drought status over the selected stations in South Korea. The new scheme used a reversible jump Markov chain Monte Carlo algorithm for inference on the model parameters and performed an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to perform a probabilistic forecast of SPI at the 3-month time scale that considered uncertainties. The point forecasts which were derived as the HMM-RCP forecast mean values, as measured by forecasting skill scores, were much more accurate than those from conventional models and a climatology reference model at various lead times. We also used probabilistic forecast verification and found that the HMM-RCP provided a probabilistic forecast with satisfactory evaluation for different drought categories, even at long lead times. In a drought event analysis, the HMM-RCP accurately predicted about 71.19 % of drought events during the validation period and forecasted the mean duration with an error of less than 1.8 months and a mean severity error of <0.57. The results showed that the HMM-RCP had good potential in probabilistic drought forecasting.  相似文献   

10.
This paper reports on an evaluation of the use of artificial neural network (ANN) models to forecast daily flows at multiple gauging stations in Eucha Watershed, an agricultural watershed located in north‐west Arkansas and north‐east Oklahoma. Two different neural network models, the multilayer perceptron (MLP) and the radial basis neural network (RBFNN), were developed and their abilities to predict stream flow at four gauging stations were compared. Different scenarios using various combinations of data sets such as rainfall and stream flow at various lags were developed and compared for their ability to make flow predictions at four gauging stations. The input vector selection for both models involved quantification of the statistical properties such as cross‐, auto‐ and partial autocorrelation of the data series that best represented the hydrologic response of the watershed. Measured data with 739 patterns of input–output vector were divided into two sets: 492 patterns for training, and the remaining 247 patterns for testing. The best performance based on the RMSE, R2 and CE was achieved by the MLP model with current and antecedent precipitation and antecedent flow as model inputs. The MLP model testing resulted in R2 values of 0·86, 0·86, 0·81, and 0·79 at the four gauging stations. Similarly, the testing R2 values for the RBFNN model were 0·60, 0·57, 0·58, and 0·56 for the four gauging stations. Both models performed satisfactorily for flow predictions at multiple gauging stations, however, the MLP model outperformed the RBFNN model. The training time was in the range 1–2 min for MLP, and 5–10 s for RBFNN on a Pentium IV processor running at 2·8 GHz with 1 MB of RAM. The difference in model training time occurred because of the clustering methods used in the RBFNN model. The RBFNN uses a fuzzy min‐max network to perform the clustering to construct the neural network which takes considerably less time than the MLP model. Results show that ANN models are useful tools for forecasting the hydrologic response at multiple points of interest in agricultural watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
West Africa has been afflicted by droughts since the declining rains of the 1970s. Therefore, this study examines the characteristics of drought over the Niger River Basin (NRB), investigates the influence of the drought on the river flow, and projects the impacts of future climate change on drought. A combination of observation data and regional climate simulations of past (1986–2005) and future climates (2046–2065 and 2081–2100) were analyzed. The standardized precipitation index (SPI) and standardized precipitation and evapotranspiration index (SPEI) were used to characterize drought while the standardized runoff index (SRI) was used to quantify river flow. Results of the study show that the historical pattern of drought is consistent with previous studies over the Basin and most part of West Africa. RCA4 ensemble gives realistic simulations of the climatology of the Basin in the past climate. Generally, an increase in drought intensity and frequency are projected over NRB. The coupling between SRI and drought indices was very strong (P < 0.05). The dominant peaks can be classified into three distinct drought cycles with periods 1–2, 2–4, 4–8 years. These cycles may be associated with Quasi-Biennial Oscillation (QBO) and El-Nino Southern Oscillation (ENSO). River flow was highly sensitive to precipitation in the NRB and a 1–3 month lead time was found between drought indices and SRI. Under RCP4.5, changes in the SPEI drought frequency range from 1.8 (2046–2065) to 2.4 (2081–2100) month year?1 while under RCP8.5, the change ranges from 2.2 (2046–2065) to 3.0 month year?1 (2081–2100). Niger Middle sub-basin is likely to be mostly impacted in the future while the Upper Niger was projected to be least impacted. Results of this study may guide policymakers to evolve strategies to facilitate vulnerability assessment and adaptive capacity of the basin in order to minimize the negative impacts of climate change.  相似文献   

12.
ABSTRACT

This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed  相似文献   

13.
Özgür Kişi 《水文研究》2008,22(20):4142-4152
This paper proposes the application of a neuro‐wavelet technique for modelling monthly stream flows. The neuro‐wavelet model is improved by combining two methods, discrete wavelet transform and multi‐layer perceptron, for one‐month‐ahead stream flow forecasting and results are compared with those of the single multi‐layer perceptron (MLP), multi‐linear regression (MLR) and auto‐regressive (AR) models. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in the Eastern Black Sea region of Turkey are used in the study. The comparison results revealed that the suggested model could increase the forecast accuracy and perform better than the MLP, MLR and AR models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Accurate forecasting of sediment is an important issue for reservoir design and water pollution control in rivers and reservoirs. In this study, an adaptive neuro-fuzzy inference system (ANFIS) approach is used to construct monthly sediment forecasting system. To illustrate the applicability of ANFIS method the Great Menderes basin is chosen as the study area. The models with various input structures are constructed for the purpose of identification of the best structure. The performance of the ANFIS models in training and testing sets are compared with the observed data. To get more accurate evaluation of the results ANFIS models, the best fit model structures are also tested by artificial neural networks (ANN) and multiple linear regression (MLR) methods. The results of three methods are compared, and it is observed that the ANFIS is preferable and can be applied successfully because it provides high accuracy and reliability for forecasting of monthly total sediment.  相似文献   

15.
Abstract

New wavelet and artificial neural network (WA) hybrid models are proposed for daily streamflow forecasting at 1, 3, 5 and 7 days ahead, based on the low-frequency components of the original signal (approximations). The results show that the proposed hybrid models give significantly better results than the classical artificial neural network (ANN) model for all tested situations. For short-term (1-day ahead) forecasts, information on higher-frequency signal components was essential to ensure good model performance. However, for forecasting more days ahead, lower-frequency components are needed as input to the proposed hybrid models. The WA models also proved to be effective for eliminating the lags often seen in daily streamflow forecasts obtained by classical ANN models. 

Editor D. Koutsoyiannis; Associate editor L. See

Citation Santos, C.A.G. and Silva, G.B.L., 2013. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59 (2), 312–324.  相似文献   

16.
A methodology is proposed for constructing a flood forecast model using the adaptive neuro‐fuzzy inference system (ANFIS). This is based on a self‐organizing rule‐base generator, a feedforward network, and fuzzy control arithmetic. Given the rainfall‐runoff patterns, ANFIS could systematically and effectively construct flood forecast models. The precipitation and flow data sets of the Choshui River in central Taiwan are analysed to identify the useful input variables and then the forecasting model can be self‐constructed through ANFIS. The analysis results suggest that the persistent effect and upstream flow information are the key effects for modelling the flood forecast, and the watershed's average rainfall provides further information and enhances the accuracy of the model performance. For the purpose of comparison, the commonly used back‐propagation neural network (BPNN) is also examined. The forecast results demonstrate that ANFIS is superior to the BPNN, and ANFIS can effectively and reliably construct an accurate flood forecast model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
《水文科学杂志》2013,58(4):588-598
Abstract

The main aim of this study is to develop a flow prediction method, based on the adaptive neural-based fuzzy inference system (ANFIS) coupled with stochastic hydrological models. An ANFIS methodology is applied to river flow prediction in Dim Stream in the southern part of Turkey. Application is given for hydrological time series modelling. Synthetic series, generated through autoregressinve moving-average (ARMA) models, are then used for training data sets of the ANFIS. It is seen that the extension of input and output data sets in the training stage improves the accuracy of forecasting by using ANFIS.  相似文献   

18.
Abstract

This study aims to assess the potential impact of climate change on flood risk for the city of Dayton, which lies at the outlet of the Upper Great Miami River Watershed, Ohio, USA. First the probability mapping method was used to downscale annual precipitation output from 14 global climate models (GCMs). We then built a statistical model based on regression and frequency analysis of random variables to simulate annual mean and peak streamflow from precipitation input. The model performed well in simulating quantile values for annual mean and peak streamflow for the 20th century. The correlation coefficients between simulated and observed quantile values for these variables exceed 0.99. Applying this model with the downscaled precipitation output from 14 GCMs, we project that the future 100-year flood for the study area is most likely to increase by 10–20%, with a mean increase of 13% from all 14 models. 79% of the models project increase in annual peak flow.

Citation Wu, S.-Y. (2010) Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrol. Sci. J. 55(8), 1251–1263.  相似文献   

19.
ABSTRACT

Combinations of low-frequency components (also known as approximations) resulting from the wavelet decomposition are tested as inputs to an artificial neural network (ANN) in a hybrid approach, and compared to classical ANN models for flow forecasting for 1, 3, 6 and 12 months ahead. In addition, the inputs are rewritten in terms of the flow, revealing what type of information was being provided to the network, in order to understand the effect of the approximations on the forecasting performance. The results show that the hybrid approach improved the accuracy of all tested models, especially for 1, 3 and 6 months ahead. The input analyses show that high-frequency components are more important for shorter forecast horizons, while for longer horizons, they may worsen the model accuracy.  相似文献   

20.
A. O. Pektas 《水文科学杂志》2017,62(14):2415-2425
This study examines the employment of two methods, multiple linear regression (MLR) and an artificial neural network (ANN), for multistep ahead forecasting of suspended sediment. The autoregressive integrated moving average (ARIMA) model is considered for one-step ahead forecasting of sediment series in order to provide a comparison with the MLR and ANN methods. For one- and two-step ahead forecasting, the ANN model performance is superior to that of the MLR model. For longer ranges, MLR models provide better accuracy, but there is an important assumption violation. The Durbin-Watson statistics of the MLR models show a noticeable decrease from 1.3 to 0.5, indicating that the residuals are not dependent over time. The scatterplots of the three methods (MLR, ARIMA and ANN) for one-step ahead forecasting for the validation period illustrate close fits with the regression line, with the ANN configuration having a slightly higher R2 value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号