首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The increasing water demand is a concern affecting many regions in the Mediterranean Basin. To overcome this situation rim countries resorted during the last decades to a massive mobilization of their water resources, often resulting in excessive water exploitation. In such a context, understanding the effects of present recharge and aquifer salinization is crucial for correct water management. Understanding the present hydrogeological situation of coastal plains requires the knowledge of both their past morphologic conditions and their recent geological evolution. Within this framework, this paper presents a review of water related problems in the Mediterranean Basin. It suggests a conceptual model for groundwater resources in Mediterranean coastal plains, deriving from the present and past recharge processes. Special attention is paid to providing a better understanding of climate change impacts on water quantity and quality, and conservation of ecological diversity.

Citation Re, V. & Zuppi, G. M. (2011) Influence of precipitation and deep saline groundwater on the hydrological systems of Mediterranean coastal plains: a general overview. Hydrol. Sci. J. 56(6), 966–980.  相似文献   

2.
T. Estrela 《水文科学杂志》2013,58(6):1154-1167
Abstract

Impacts on water resources produced by climate change can be exacerbated when occurring in regions already presenting low water resources levels and frequent droughts, and subject to imbalances between water demands and available resources. Within Europe, according to existing climate change scenarios, water resources will be severely affected in Spain. However, the detection of those effects is not simple, because the natural variability of the water cycle and the effects of water abstractions on flow discharges complicate the establishment of clear trends. Therefore, there is a need to improve the assessment of climate change impacts by using hydrological simulation models. This paper reviews water resources and their variability in Spain, the recent modelling studies on hydrological effects of climate change, expected impacts on water resources, the implications in river basins and the current policy actions.

Editor Z.W. Kundzewicz

Citation Estrela, T., Pérez-Martin, M.A., and Vargas, E., 2012. Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57 (6), 1154–1167.  相似文献   

3.
Abstract

There is a continuing effort to advance the skill of long-range hydrological forecasts to support water resources decision making. The present study investigates the potential of an extended Kalman filter approach to perform supervised training of a recurrent multilayer perceptron (RMLP) to forecast up to 12-month-ahead lake water levels and streamflows in Canada. The performance of the RMLP was compared with the conventional multilayer perceptron (MLP) using suites of diagnostic measures. The results of the forecasting experiment showed that the RMLP model was able to provide a robust modelling framework capable of describing complex dynamics of the hydrological processes, thereby yielding more accurate and realistic forecasts than the MLP model. The performance of the method in the present study is very promising; however, further investigation is required to ascertain the versatility of the approach in characterizing different water resources and environmental problems.

Citation Muluye, G. Y. (2011) Improving long-range hydrological forecasts with extended Kalman filters. Hydrol. Sci. J. 56(7), 1118–1128.  相似文献   

4.
Abstract

This paper gives a preliminary assessment of Nigeria's surface and underground water resources and discusses the relevant meteorological, hydrological and hydrogeological factors which determine the magnitude and spatial pattern of the distribution of these resources. It is pointed out that the present uncoordinated and piecemeal development of Nigeria's water resources stems from lack of a national water policy and an adequate institutional framework for managing these resources. Two solutions are suggested. One is that the Federal Government should as a matter of urgency establish a National Water Resources Board charged with rational planning, management and development of the country's water resources. The other is that a training programme should be established to produce the necessary skilled manpower in the field of water resources.  相似文献   

5.
ABSTRACT

An analysis of the present balance of the ice mass on the Antarctic continent carried out by several authors, shows a substantial excess of supply over expenditure. However, no consideration was given to the possibility of a decrease in the amount of Antarctic ice by melting at its lower surface and a run-off of water. This paper is intended to fill this gap.

A theoretical analysis shews that the possibility of such melting exists for a definite relationship between the ice thickness, the temperature at its surface, the rate of accumulation and the geothermal heat flow.

Using numerical values for these factors, it is shown that throughout the entire central zone of the Antarctic ice cap, over an area of about 12 × 106 sq.km, there is continuous melting at the bed.

Contours of the rates of bottom melting are given on a map of the continent. The maximun rate of melting is about 6–7 mm of water per year; the average rate in the area of melting is about 3 mm of water per year, equivalent to a volume not exceeding 20 km3 of water per year, and not more than several percent of the total ice balance of the continent.  相似文献   

6.
Abstract

Water availability is one of the most important factors for economic development in the Middle East. The Water Evaluation And Planning (WEAP) model was used to assess present and future water demand and supply in Syria till 2050. Nonconventional water resources, climate change, development, industrial growth, regional cooperation, and implementation of new water saving techniques/devices were considered important factors to include in the analysis using the WEAP model. Six scenarios were evaluated depending on the actual situation, climate change, best available technology, advanced technology, regional cooperation, and regional conflict. The results display a vital need for new water resources to balance the unmet water demands. Climate change will have a major effect on Syrian water resources; possible regional conflict will also to a major extent affect water balance. However, regional cooperation and using the best available technology can help in minimizing the gap between supply and demand.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   

7.
Abstract

The development of historical water resources in the South Asian subcontinent has been largely dependent on the hydrological background. The runoff patterns are derived from climate statistics and the historical developments in different areas are related to these patterns.

Citation Sutcliffe, J., Shaw, J. & Brown, E. (2011) Historical water resources in South Asia: the hydrological background. Hydrol. Sci. J. 56(5), 775–788.  相似文献   

8.
9.
ABSTRACT

We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter alia, on the capability of scientists to deliver a new, coherent and technical vision for the future development of water systems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   

10.
ABSTRACT

We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter alia, on the capability of scientists to deliver a new, coherent and technical vision for the future development of water systems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   

11.
Summary

The urgent need for planning information on the effect of changes in land use on water resources in East Africa has necessitated the use of intensive methods of experimental catchment area research in order to produce data on the water balance of different vegetation covers in a matter of years rather than decades.

Quantitative water balance studies require an intensive network of raingauges to estimate the volumetric water input with an accuracy comparable with the measurement of outflow. Observations of the soil moisture status and energy balance, in addition to those of rainfall and streamflow are necessary to provide independent checks for “leaks” from the catchments. The successful application of these methods is illustrated from the results of three catchment area experiments in Kenya and Tanzania. The water use of each vegetational complex is characterized by the ratio of the transpiration, E t, to the evaporative demand from an open water surface, E o. This ratio is shown to vary little from year to year despite considerable variation in E t and E o.

An intensive method of analysis of stormflow response, based on the construction of a prediction equation relating stormflow to rainfall quantity and intensity and to antecedent surface soil moistrue condition, is described. Results from the application of the method in one of the catchments are presented in detail.  相似文献   

12.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

13.
ABSTRACT

Because of the late withdrawal of the Levantine lake waters and because of low relief the Eastern Romanian Plain was fragmented only by big alochthonous rivers (Ialomi?a, C?lm??ui and Buz?u).

The tabular-like, 40–50-km-wide interfluve areas covered by loessoid deposits and eolian sands on the periphery are deprived of surface drainage which accounts for their present evolution.

The major relief forms in these interfluves are depressions called in Romanian ‘crov’ (sink-holes) in the central areas and short valleys formed initially by erosion processes and now modelled by mechanical and chemical weathering at their periphery: in these depressions (sink-holes) and in the secondary valleys, peripheral to the interfluve areas, lakes had started to be formed.

Because of the semiarid climate sink-hole lakes have an intermittent hydrological regime, whereas those located in the small fluviatile liman-type valleys, enjoy a permanent regime. By the absence of surface drainage, by the loss of significant amounts of water through evaporation and the degree of mineralization, these lakes fall within the group of salt lakes.

In the past few years (since 1966 and especially since 1969) the level of these lakes has continually risen and the depressions formerly lacking water started being flooded by the rising of the piezometric level.

An analysis was made of the water balance of the Amara-Ialomi?a lake to investigate this phenomenon.

Level and evaporation recordings were made in the period 1956–1970. The findings revealed that the supply of underground water to the lake amounts to 47·3 per cent exceeding the water supply produced by the rains that fell on the surface of the lake (46·7 per cent). A close relationship was established (with a lapse of 8–12 months) between the surface supply of the basin (through rainfalls) and the flow of underground water to the lake.

Extending the precipitation-induced level changes over a longer period (1896–1915 and 1921–1970) it was found that level increases are cyclic, as a direct consequence of the corresponding precipitation regime.  相似文献   

14.
ABSTRACT

Due to their efficiency, revitalized traditional techniques for irrigation management of scarce water resources have been suggested as a way to at least partially cope with the present water crises in the Middle East. A better irrigation management includes re-using treated wastewater in agriculture. Treated wastewater should also be used in industrial processes, thus contributing to a more efficient overall water management. However, the most important change leading to better water management is improving water efficiency in agricultural irrigation. Traditional water management techniques have an important role in many Middle East and North African (MENA) countries. Besides bringing more water to a thirsty population, they can also contribute to the societal awareness, and recognition of the great diversity of cultural and social values water has to human civilization.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR P. Hubert  相似文献   

15.
Abstract

Adequate water resources management at the basin level needs quality downscaling of climate change scenarios for application to impact assessment and adaptation work. This study evaluates the ability of a regional climate model (RegCM3) to simulate the present-day climate and regional water balance over the Niger River Basin (NRB). RegCM3 gives a good simulation of the NRB hydroclimatic features. The mean bias error for monthly temperature is 1.5°C, 0.3 mm d-1 for rainfall, and 0.4 mm d-1 for runoff. Moderate to high correlations (0.66–0.95) were found between the modelled and the observed variables. RegCM3-based water cycling indices were not statistically different from the observation. Seasonal moistening efficiency (m) ranges between 19% and 37%; 66% of the available atmospheric moisture over NRB precipitates between June and September, of which 21% originates from local evaporation. The result suggests that the moisture sink period is July to October with very high precipitation efficiency over the basin. The model reproduces the hydroclimatology of the NRB and hence is a suitable tool for further studies relating to the assessment of climate change impacts on river basin water systems.
Editor Z. W. Kundzewicz; Associate editor D. Hughes  相似文献   

16.
Abstract

Surface water resources, although abundant, are unevenly distributed in the tropical Dominican Republic. Despite large surface water regulation schemes, some of the semiarid regions remain deficient in water resources. A preliminary appraisal of the aquifer systems of the country, with emphasis on the three major regional aquifers, suggests how these deficiencies may be compensated.  相似文献   

17.
Abstract

River runoff and the resulting water resources which provide the needs of mankind for fresh water are subject to variations in space and time mainly depending on the space and time variability of climate characteristics. Thus there are close interrelations between the problems of the provision of fresh water and the problems of both natural and anthropogenic changes in climate. Moreover, these interrelations are characterized by specific features both under natural conditions and during a period of man's intensive impact on water resources. The problem of these interrelations has acquired a particular scientific and practical importance during recent years in which climatologists have attempted to predict global anthropogenic changes in climate for the near future, changes unknown on our plant for millennia. The present paper has been prepared mainly on the basis of research results obtained at the State Hydrological Institute in Leningrad. It describes the global interrelations between climatic characteristics and water resources under natural conditions and in the case of intensive water resources development; up-to-date ideas on the anthropogenic changes of the global climate are given; the possible consequent effects on future water resources are analysed.  相似文献   

18.
Abstract

There has been no ubiquitously and unanimously accepted definition of the term ecohydrology (hydro-ecology). The present contribution aims to stir discussion, which may lead to getting closer to a consensus on the interpretation of the notion. A robust finding, holding across a range of existing definitions, is that the dynamically developing area of ecohydrology holds potential to be a very important tool serving sustainable development and management of water resources.  相似文献   

19.
Abstract

This paper presents the results of a survey carried out in 2010 aimed at evaluating the type and quality of the groundwater resources of the Bangui region of the Central African Republic. This work is the first step towards the development of groundwater resources in the Central African Republic in order to find alternatives to direct pumping from the Ubangi River and provide the population of the suburbs with a safer drinking water supply from deep boreholes. By combining both geological and hydrogeochemical approaches, it appears that the geology of Bangui is favourable to the development of a secure and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep Precambrian carbonate aquifers, known as the Bimbo and Fatima formations, are identified as target resources in view of the relatively good quality of their water from the chemical point of view, and the semi-confined structure of the aquifers that prevents the mixing with shallow aquifers that are already strongly affected by domestic and industrial pollution. The main difficulty in terms of exploitation is to appreciate the depth of the resource and the more or less fractured/palaeo-karstified type of the porosity.

Editor Z.W. Kundzewicz

Citation Djebebe-Ndjiguim, C.L., Huneau, F., Denis, A., Foto, E., Moloto-a-Kenguemba, G., Celle-Jeanton, H., Garel, E., Jaunat, J., Mabingui, J., and Le Coustumer, P., 2013. Characterization of the aquifers of the Bangui urban area, Central African Republic, as an alternative drinking water supply resource. Hydrological Sciences Journal, 58 (8), 1760–1778.  相似文献   

20.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号