首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

This article addresses the critical need for a better quantitative understanding of how water resources from the Hérault River catchment in France have been influenced by climate variability and the increasing pressure of human activity over the last 50 years. A method is proposed for assessing the relative impacts of climate and growing water demand on the decrease in discharge observed at various gauging stations in the periods 1961–1980 and 1981–2010. An annual water balance at the basin scale was calculated first, taking into account precipitation, actual evapotranspiration, water withdrawals and water discharge. Next, the evolution of the seasonal variability in hydroclimatic conditions and water withdrawals was studied. The catchment was then divided into zones according to the main geographical characteristics to investigate the heterogeneity of the climatic and human dynamics. This delimitation took into account the distribution of climate, topography, lithology, land cover and water uses, as well as the availability of discharge series. At the area scale, annual water balances were calculated to understand the internal changes that occurred in the catchment between both past periods. The decrease in runoff can be explained by the decrease in winter precipitation in the upstream areas and by the increase during summer in both water withdrawals and evapotranspiration in the downstream areas, mainly due to the increase in temperature. Thus, water stress increased in summer by 35%. This work is the first step of a larger research project to assess possible future changes in the capacity to satisfy water demand in the Hérault River catchment, using a model that combines hydrological processes and water demand.
Editor Z.W. Kundzewicz  相似文献   

2.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   

3.
ABSTRACT

The summer precipitation (June–September) in the source region of the Yellow River accounts for about 70% of the annual total, playing an important role in water availability. This study divided the source region of the Yellow River into homogeneous zones based on precipitation variability using cluster analysis. Summer precipitation trends and teleconnections with global sea-surface temperatures (SST) and the Southern Oscillation Index (SOI) from 1961 to 2010 were investigated by Mann-Kendall test and Pearson product-moment correlation analysis. The results show that the northwest part (Zone 1) had a non-significantly increasing trend, and the middle and southeast parts (zones 2 and 3) that receive the most precipitation displayed a statistically significant decreasing trend for summer precipitation. The summer precipitation in the whole region showed statistically significant negative correlations with the central Pacific SST for 0–4 month lag and with the Southern Indian and Atlantic oceans SST for 5–8 month lag. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations, mainly for 0–2 months lag, with summer precipitation in the source region of the Yellow River. It is seen that El Niño Southern Oscillation (ENSO) events have an influence on summer precipitation, and the predominant negative correlations indicate that higher SST in equatorial Pacific areas corresponding to El Niño coincides with less summer precipitation in the source region of the Yellow River.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

4.
Abstract

The generation of reliable quantitative precipitation estimations (QPEs) through use of raingauge and radar data is an important issue. This study investigates the impacts of radar QPEs with different densities of raingauge networks on rainfall–runoff processes through a semi-distributed parallel-type linear reservoir rainfall–runoff model. The spatial variation structures of the radar QPE, raingauge QPE and radar-gauge residuals are examined to review the current raingauge network, and a compact raingauge network is identified via the kriging method. An analysis of the large-scale spatial characteristics for use with a hydrological model is applied to investigate the impacts of a raingauge network coupled with radar QPEs on the modelled rainfall–runoff processes. Since the precision in locating the storm centre generally represents how well the large-scale variability is reproduced; the results show not only the contribution of kriging to identify a compact network coupled with radar QPE, but also that spatial characteristics of rainfalls do affect the hydrographs.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Pan, T.-Y., Li, M.-Y., Lin, Y.-J., Chang, T.-J., Lai, J.-S., and Tan, Y.-C., 2014. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrological Sciences Journal, 59 (7), 1335–1352. http://dx.doi.org/10.1080/02626667.2014.923969  相似文献   

5.
Abstract

The objectives of this work are: (a) to statistically test and quantify the decreasing trends of streamflow and sediment discharge of the Yellow River in China during 1950–2005, (b) to identify change points or transition years of the decreasing trends, and (c) to diagnose whether the decreasing trends were caused by precipitation changes or human intervention, or both. The results show that significant decreasing trends in annual streamflow and sediment discharge have existed since the late 1950s at three stations located in the upper, middle, and lower reaches of the Yellow River (P?=?0.01). Change-point analyses further revealed that transition years existed and that rapid decline in streamflow and sediment discharge began in 1985 in most parts of the basin (P?=?0.05). Adoption of conservation measures in the 1980s and 1990s corroborates the identified transition years. Double-mass curves of precipitation vs streamflow (sediment) for the periods before and after the transition years show remarkable decreases in proportionality of streamflow (sediment) generation. All percentiles of streamflow and sediment discharge after the transition years showed rapid reduction. In the absence of significantly decreasing precipitation trends, it is concluded that the decreasing trends were very likely caused by human intervention. Relative to the period before the transition, human intervention during 1985–2005 reduced cumulative streamflow by 13.5, 14.3 and 24.6% and cumulative sediment discharge by 29.0, 24.8 and 26.5%, at Toudaoguai, Huayuankou and Lijin, respectively, showing the quantitative conservation effect in the basin.

Citation Gao, P., Zhang, X.-C., Mu, X.-M., Wang, F., Li, R. & Zhang, X. (2010) Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950–2005. Hydrol. Sci. J. 55(2), 275–285.  相似文献   

6.
ABSTRACT

Discharges and water levels are essential components of river hydrodynamics. In unreachable terrains and ungauged locations, it is quite difficult to measure these parameters due to rugged topography. In the present study an artificial neural network model has been developed for the Ramganga River catchment of the Ganga Basin. The modelled network is trained, validated and tested using daily water flow and level data pertaining to 4 years (2010–2013). The network has been optimized using an enumeration technique and a network topology of 4-10-2 with a learning rate set at 0.06, which was found optimum for predicting discharge and water-level values for the considered river. The mean square error values obtained for discharge and water level for the tested data were found to be 0.046 and 0.012, respectively. Thus, monsoon flow patterns can be estimated with an accuracy of about 93.42%.
Editor M.C. Acreman; Associate editor E. Gargouri  相似文献   

7.
Abstract

Water quality of the Uruguay River was evaluated with multi-parametric (temperature, turbidity, conductivity, pH, dissolved oxygen) and sediment trap data (particle flux, total organic carbon and nitrogen contents) and correlated to precipitation, river discharge and El Niño Southern Oscillation (ENSO) indices for the period 2006–2011. Hydro-meteorological parameters averaged 24–85% variability with coincident precipitation (200–400 mm month-1), discharge (7000–28 000 m3 s-1) and turbidity peaks (50–80 NTU) in the austral spring, and absolute maxima during the El Niño 2009 episode. Spectral analysis of discharge and sea-surface temperature anomaly (SSTA) showed consistent variance maxima at approx. 3 and 1.5 years. Deseasonalized discharge was significantly correlated to SSTA. During river floods, pH decreased (from 7.5 to 6.6) and particle dynamics peaked (turbidity: 15–80 NTU; vertical fluxes: 20–200 g m-2 d-1; total solid load: <1000 to 100 000 t d-1),whereas TOC remained stable (3.2 ± 0.8%) and C/N ratios increased (10–12) due to the higher contribution of terrestrial detritus.  相似文献   

8.
Abstract

The concept of “catchment-scale storm velocity” quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space–time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2 to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling.

Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Nikolopoulos, E.I., Borga, M., Zoccatelli, D., and Anagnostou, E.N., 2014. Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59 (7), 1363–1376. http://dx.doi.org/10.1080/02626667.2014.923889  相似文献   

9.
Abstract

Vrana Lake in Dalmatia is a karstic kryptodepression connected to the nearby sea through the karstic subsoil and a canal. Due to interactions with the sea, lake water salinity increases greatly during severe dry periods, seriously endangering the ecosystem. Trend analysis (1961–2010) reveals a decrease in precipitation and surface inflow, but an increase in air temperature, and in sea and lake water levels. Lake inflow and water losses are only partially monitored. Average annual inflow from the monitored part of the catchment is 1722 m3 s-1, but total inflow is significantly greater; the average difference between total inflow and cumulative water losses is 3072 m3 s-1. The paper uses modelling to evaluate total inflow into the lake system, taking into consideration projected climate changes/variations till 2100 from the RegCM3 and ALADIN climate models. The analysis indicates marked decrease in discharge values by the end of this century, by as much as 60%.
Editor Z.W. Kundzewicz  相似文献   

10.
Abstract

A large dam is planned at Stiegler’s Gorge in Tanzania. The change in the Rufiji River flood pattern will affect downstream ecosystems. This paper concentrates on the highly productive floodplain lakes that play a vital role in local livelihoods. A participatory monitoring system with village-based observers collected water level, rainfall, fisheries and food data from 2001 to 2011. Water balances of the lakes show dependence on the Rufiji River flood, with varying vulnerability. With the dam design flood of 2500 m3 s-1, lakes with a high threshold and small catchment will dry out quickly. Lakes with a lower threshold and substantial catchment are more robust but may still dry out during prolonged local drought. Analysis of rainfall (1923–2012) indicates a recent decrease. The data were analysed through feedback workshops with local observers, government technical staff and researchers. Through this collaborative approach, local capacity in preparing for the post-dam future was enhanced.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Duvail, S., Mwakalinga, A.B., Eijkelenburg, A., Hamerlynck, O., Kindinda, K., and Majule, A., 2014. Jointly thinking the post-dam future: exchange of local and scientific knowledge on the lakes of the Lower Rufiji, Tanzania. Hydrological Sciences Journal, 59 (3–4), 713–730.  相似文献   

11.
Abstract

The impact of climate and land-use changes on hydrological processes and sediment yield is investigated in the Be River catchment, Vietnam, using the Soil and Water Assessment Tool (SWAT) hydrological model. The sensitivity analysis, model calibration and validation indicated that the SWAT model could reasonably simulate the hydrology and sediment yield in the catchment. From this, the responses of the hydrology and sediment to climate change and land-use changes were considered. The results indicate that deforestation had increased the annual flow (by 1.2%) and sediment load (by 11.3%), and that climate change had also significantly increased the annual streamflow (by 26.3%) and sediment load (by 31.7%). Under the impact of coupled climate and land-use changes, the annual streamflow and sediment load increased by 28.0% and 46.4%, respectively. In general, during the 1978–2000 period, climate change influenced the hydrological processes in the Be River catchment more strongly than the land-use change.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang

Citation Khoi, D.N. and Suetsugi, T., 2014. Impact of climate and land-use changes on hydrological processes and sediment yield—a case study of the Be River catchment, Vietnam. Hydrological Sciences Journal, 59 (5), 1095–1108.  相似文献   

12.
Abstract

Radar quantitative precipitation estimates (QPEs) were assessed using reference values established by means of a geostatistical approach. The reference values were estimated from raingauge data using the block kriging technique, and the reference meshes were selected on the basis of the kriging estimation variance. Agreement between radar QPEs and reference rain amounts was shown to increase slightly with the space–time scales. The statistical distributions of the errors were modelled conditionally with respect to several factors using the GAMLSS approach. The conditional bias of the errors presents a complex structure that depends on the space–time scales and the considered geographical sub-domains, while the standard deviation of the errors has a more homogeneous behaviour. The estimation standard deviation of the reference rainfall and the standard deviation of the errors between radar and reference rainfall were found to have the same magnitude, indicating the limitations of the available network in terms of providing accurate reference values for the spatial scales considered (5–100 km2).
Editor D. Koutsoyiannis; Guest editor R.J. Moore

Citation Delrieu, G., Bonnifait, L., Kirstetter, P.-E., and Boudevillain, B., 2013. Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59 (7), 1300–1311. http://dx.doi.org/10.1080/02626667.2013.827337  相似文献   

13.
ABSTRACT

This study examines the performance of three hydrological models, namely the artificial neural network (ANN) model, the Hydrologiska Byråns Vattenbalansavdelning-D (HBV-D) model, and the Soil and Water Integrated Model (SWIM) over the upper reaches of the Huai River basin. The assessment is done by using databases of different temporal resolution and by further examining the applicability of SWIM for different catchment sizes. The results show that at monthly scale the performance of the ANN model is better than that of HBV-D and SWIM. The ANN model can be applied at any temporal scale as it establishes an artificial precipitation–runoff relationship for various time scales by only using monthly precipitation, temperature and runoff data. However, at daily scale the performance of both HBV-D and SWIM are similar or even better than the ANN model. In addition, the performance of SWIM at a small catchment size (less than 10 000 km2) is much better than at a larger catchment size. In view of climate change modelling, HBV-D and SWIM might be integrated in a dynamical atmosphere-water-cycle modelling rather than the ANN model due to their use of observed physical links instead of artificial relations within a black box.
Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

14.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The long‐term trends of yearly discharge time series and runoff variability at seven stations along the River Danube are identified. The results of statistical analysis of discharge time series indicate the period around the year 1860 was the driest decade in central and eastern Europe since 1840. In these years, the mean annual air temperature in central Europe was lower by about 1 °C compared with the 1990s. It is important to notice that the two driest decades (around 1860s and 1990s) of the instrumental era occurred in very different temperature conditions. The 28–31 years; 20–21 years; 14 years, as well as 4·2, 3·6, and 2·4 years fluctuations of annual discharge in the River Danube were found. Also, the long‐term streamflow prediction based on stochastic modelling methods is treated. Harmonic models and the Box–Jenkins methods were used. The predictions of yearly River Danube discharge time series were made for two decades ahead. From the stochastic models it follows that the annual discharge in the Danube at Turnu Severin station should reach its local maximum within the years 2004–06. The period 2015–19 should be dry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In‐stream sediment transport plays an important role in delivery of sediment‐associated terrestrial elements. Investigating the history of fluvial sediment regime responding to changes in natural and anthropogenic driving forces provides a theoretical basis for establishment of optimal strategies on catchment management. The present study aims to systematically detect the patterns of change in sediment load at two key hydrological stations (Pengshan and Gaochang) in the Minjiang River and quantitatively evaluate the relative contributions of regional precipitation change and multiple local human activities to the observed sediment variations. Abrupt change in annual sediment load was detected in 1990 at Pengshan and in 1968, 1980 and 1992 at Gaochang. Compared with the baseline period of 1957–1990, precipitation decline and human activities had respectively contributed to 5 × 106 t and 2 × 106 t of reduction in mean annual sediment load at Pengshan during 1991–2007. For the entire Minjiang basin, taking 1956–1968 as the baseline period, precipitation decline and human activities had relatively contributed to 10 × 106 t and 18 × 106 t of reduction in mean annual sediment load at Gaochang during 1969–1980. During 1981–1992, precipitation decline had relatively contributed to 5 × 106 t of reduction in mean annual sediment load, but human activities had led to 3 × 106 t of increase in mean annual sediment load. During 1993–2009, 13 × 106 t and 17 × 106 t of reduction in mean annual sediment load may be attributed to precipitation decline and human activities, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

18.
《水文科学杂志》2012,57(2):227-241
ABSTRACT

The study addresses homogeneity testing of annual discharge time series for eight hydrological stations and five annual climate time series for one weather station in the Kupa River Basin, between Slovenia and Croatia, and global annual average surface temperature time series for the period 1961–2010. The standard normal homogeneity test (SNHT) was used to detect both abrupt and gradual linear trend homogeneity breaks. The results reveal natural change points at the beginning of the 1980s. Absolute homogeneity testing of average annual weather station-level air pressure, annual precipitation, differences between precipitation totals and potential evapotranspiration and surface runoff from the independent observation time series confirmed an abrupt shift, also at the beginning of the 1980s. The trend of local air temperature for 1985–2000, which partly coincides with global surface temperature trend for 1974–2005, strengthened the river discharge regime shift since the beginning of the 1980s. These results could improve climate variation monitoring and estimation of the impact of climate variation on the environment in the area. Generally, an indication of climate regime change points and an assessment of their duration could provide significant benefits for the society.  相似文献   

19.
Abstract

Artificial neural networks (ANNs) have recently been used to predict the hydraulic head in well locations. In the present work, the particle swarm optimization (PSO) algorithm was used to train a feed-forward multi-layer ANN for the simulation of hydraulic head change at an observation well in the region of Agia, Chania, Greece. Three variants of the PSO algorithm were considered, the classic one with inertia weight improvement, PSO with time varying acceleration coefficients (PSO-TVAC) and global best PSO (GLBest-PSO). The best performance was achieved by GLBest-PSO when implemented using field data from the region of interest, providing improved training results compared to the back-propagation training algorithm. The trained ANN was subsequently used for mid-term prediction of the hydraulic head, as well as for the study of three climate change scenarios. Data time series were created using a stochastic weather generator, and the scenarios were examined for the period 2010–2020.
Editor Z.W. Kundzewicz; Associate editor L. See

Citation Tapoglou, E., Trichakis, I.C., Dokou, Z., Nikolos, I.K., and Karatzas, G.P., 2014. Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrological Sciences Journal, 59(6), 1225–1239. http://dx.doi.org/10.1080/02626667.2013.838005  相似文献   

20.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号