首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A baseline study involving analyses of subsurface water samples from the Cape Coast granitoid complex, Lower Birimian, Togo Formation and the Voltaian Group, was carried out to assess their suitability for drinking, domestic and agricultural purposes. Study results show that pH within the range (3.0 ≤ pH ≤ 6.5) constitutes 74% of the boreholes analysed, and 51% have hardness values ranging from 7.89 to 73.24 mg/l as CaCO3 and are described as soft. Total dissolved solids are less than 1,000 mg/l and generally characterized by low conductivity values, of which 95% are within the range (55 ≤ EC ≤ 1,500 μS/cm). The mean values of the major cations (Ca2+, Mg2+, Na+, K+) and anions (SO42−, Cl, HCO3) are all within the World Health Organisation (WHO) standards. Five (5) of the boreholes sampled have nitrate (NO3) contamination. Even though NO3 contamination and acidic waters exist in some of the boreholes, the majority of the boreholes are excellent for drinking and domestic purposes. Assessment of the groundwaters for agricultural irrigation revealed three main categories. These are low salinity–low sodicity (C1–S1), medium salinity–low sodicity (C2–S1) and high salinity–low sodicity (C3–S1), using the US Salinity Laboratory (USSL) classification scheme. As much as 95% of the samples plotted in the ‘excellent to good’ and ‘good to permissible’ categories on the Wilcox diagram. The groundwater in the study area may therefore be regarded as good for irrigation activities. The major identifiable geochemical processes responsible for the evolution of the various ions are mineral weathering and chemical reactions.  相似文献   

2.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

3.
In this study, the hydrochemical characteristics of shallow groundwater in a coastal region (Khulna) of southwest Bangladesh have been evaluated based on different indices for drinking and irrigation uses. Water samples were collected from 26 boreholes and analyzed for major cations and anions. Other physico-chemical parameters like pH, electrical conductivity (EC), and total dissolved solids were also measured. Most groundwater is slightly alkaline and largely varies in chemical composition, e.g. EC ranges from 962 to 9,370 μs/cm. The abundance of the major ions is as follows: Na+ > Ca2+ > Mg2+ > K+ = Cl > HCO3  > SO4 2− > NO3 . Interpretation of analytical data shows two major hydrochemical facies (Na+–K+–Cl–SO4 2− and Na+–K+–HCO3 ) in the study area. Salinity, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. Results suggest that the brackish nature in most of the groundwaters is due to the seawater influence and hydrogeochemical processes.  相似文献   

4.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

5.
 An integrated geological, geoelectrical and hydrochemical investigation of shallow groundwater occurrence in the Ibadan area, southwestern Nigeria, is presented. The primary objective was to characterise the groundwater in a typical low-latitude environment underlain by Precambrian crystalline basement complex rocks. The dominant rocks comprise suites of gneisses and quartzites. Chemical analyses of the groundwater show that the mean concentration of the cations is in the order Na>Ca>Mg>K while that for the anions is Cl>HCO3>NO3>SO4. Statistical analyses, using the product-moment coefficient of correlation, indicate positive correlations between the following pairs of parameters: TDS and conductivity (r=0.96); Na++Mg2+ and Cl (r=0.95); Na++K+ and Ca2+ (r=0.43); Na++K+ and HCO3 (r=0.17); Ca2+ and Mg2+ (r=0.74); Ca2+ and HCO3 (r=0.33); Ca2++Mg2+ and HCO3 (r=0.31) and pH and HCO3 (r=0.54). A very weak negative correlation was recorded between pH and Cl, with r=–0.003. Five groundwater groups have been identified, namely, (1) the Na-Cl, Na-Ca-Cl, Na-Ca-(Mg)-Cl; (2) the Ca-(Mg)-Na-HCO3-Cl, Na-Ca-HCO3-Cl, and Ca-HCO3-Cl; (3) the Ca-(Mg)-Na-HCO3, Ca-Na-HCO3; (4) Ca-Na-Cl-(SO4)-HCO3 and (5) the Ca-(Mg)-Na-SO4-HCO3. The different groups reflect the diversity of bedrock types and consequently also of the products of weathering. Most of the water sampled is unfit for drinking on account of the high NO3 content. It can, however, be used for irrigation purposes as the sodium hazard is low while the salinity hazard ranges from low to medium. Resistivity soundings indicate the presence of a thick weathering profile, which could be up to 60 m. Such sites should be the target for any long-term and sustainable groundwater development in the area. Received: 15 April 1998 · Accepted: 4 July 1998  相似文献   

6.
In this study, 92 groundwater samples were collected from the Attica region (Greece). Moreover, geographical information system database, geochemistry of groundwater samples and statistics were applied. These were used for studying the chemical parameters (NO3 , Mg2+, Ca2+, Cl, and Na+) and conductivity spatial distribution and for assessing their environmental impact. The ranges of chemical parameters of the water samples (in mg L−1) are: NO3 1–306, Mg2+ 2–293, Ca2+ 3–453, Cl 5–1,988, and Na+ 4–475. The elevated concentrations of sodium, Mg2+, Clare attributed to natural contamination (seawater intrusion). On the other hand, NO3 elevated concentrations are attributed to anthropogenic contamination (nitrate fertilizers). The results of the GIS analysis showed that elevated values of Na+, Mg2+, Clare related to shrubby and sparsely vegetated areas, while elevated values of NO3 are connected with urban and agricultural areas.  相似文献   

7.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, NO3 , Cl, F, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3 , Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.  相似文献   

8.
The hydrogeochemical study of surface and subsurface water of Mahi River basin was undertaken to assess the major ion chemistry, solute acquisition processes and water quality in relation to domestic and irrigation uses. The analytical results show the mildly acidic to alkaline nature of water and dominance of Na+ and Ca2+ in cationic and HCO3 and Cl in anionic composition. In general, alkaline-earth elements (Ca2+ + Mg2+) exceed alkalis (Na+ + K+) and weak acids (HCO3 ) dominate over strong acids (SO4 2+ + Cl) in majority of the surface and groundwater samples. Ca2+–Mg2+–HCO3 is the dominant hydrochemical facies both in surface and groundwater of the area. The weathering of rock-forming minerals mainly controlled the solute acquisition process with secondary contribution from marine and anthropogenic sources. The higher concentration of sodium and dissolved silica, high equivalent ratios of (Na+ + K+/TZ+), (Na+ + K+/Cl) and low ratio of (Ca2+ + Mg2+)/(Na+ + K+) suggest that the chemical composition of the water is largely controlled by silicate weathering with limited contribution from carbonate weathering and marine and anthropogenic sources. Kaolinite is the possible mineral that is in equilibrium with the water, implying that the chemistry of river water favors kaolinite formation. Assessment of water samples for drinking purposes suggests that the majority of the water samples are suitable for drinking. At some sites concentrations of TDS, TH, F, NO3 and Fe are exceeding the desirable limit of drinking. However, these parameters are well within the maximum permissible limit except for some cases. To assess the suitability for irrigation, parameters like SAR, RSC and %Na were calculated. In general, both surface and groundwater is of good to suitable category for irrigation uses except at some sites where high values of salinity, %Na and RSC restrict its uses.  相似文献   

9.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

10.
This paper presents a study on Manasbal lake, which is one of the high altitude lakes in the Kashmir Valley, India. Eighteen water samples were analysed for major ions and trace elements to assess the variability of water quality of the lake for various purposes. Geostatistics, the theory of regionalized variables, was then used to enhance the dataset and estimate some missing spatial values. Results indicated that the concentration of major ions in the water samples in winter was higher than in summer. The scatter diagrams suggested the dominance of alkaline earths over the alkali elements. Three types of water were identified in the lake that are referred to as Ca–HCO3, Mg–HCO3 and hybrid types. The lake water was found to be controlled by rock–water interaction with carbonate lithology as a dominant source of the solutes. The major (Ca2 + , Mg2 + , Na + , K + , NO3 and HCO3-{\rm{HCO}}_{3}^{-}, CO3 and Cl) and trace elements of the lake water were within the World Health Organization standards, therefore the lake water was considered chemically safe for drinking purposes. Although NO3 concentration (ranging from 1.72 to 2 mg/L), is within the permissible limit and not very alarming, the gradually increasing trend is not acceptable. It is however, important to guard its spatio-temporal variability as the water is used for domestic as well as agricultural purposes. This study is significant as hydrogeological information on such high altitude lakes in India is scanty.  相似文献   

11.
A hydrogeochemical study of surface water of the West Bokaro coalfield has been undertaken to assess its quality and suitability for drinking, domestic and irrigation purposes. For this purpose, fourteen samples collected from rivers and ponds of the coalfield were analysed for pH, conductivity, total dissolved solids (TDS), major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3-, F-, Cl-, SO42- and NO3-) and trace metals. The pH of the analysed water samples varied from 7.3 to 8.2, indicating slightly alkaline in nature. The electrical conductivity (EC) value varied from 93 μs cm-1 to 906 μs cm-1 while the TDS varied from 76 mg L-1 to 658 mg L-1. HCO3- and SO42- are the dominant anion and Ca2+ and Na+ the cation in the surface water. The concentration of alkaline earth metals (Ca2+ + Mg2+) exceed the alkali metals (Na+ + K+) and HCO3- dominates over SO42- + Cl- concentrations in the majority of the surface water samples. Ca2+ -Mg2+ -HCO3- and Ca2+ -Mg2+ -Cl- are the dominant hydrogeochemical facies in the surface water of the area. The water chemistry is mainly controlled by rock weathering with secondary contribution from anthropogenic sources. For quality assessment, analyzed water parameter values compared with Indian and WHO water quality standard. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. However, concentrations of TDS, TH, Ca2+, Mg2+ and Fe are exceeding the desirable limits in some water samples and needs treatment before its utilization. The calculated parameters such as sodium absorption ration, percent sodium, residual sodium carbonate, permeability index and magnesium hazard revealed good to permissible quality and suitable for irrigation purposes, however, higher salinity, permeability index and Mg-ratio restrict its suitability for irrigation at few sites.  相似文献   

12.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

13.
The purpose of this study is to investigate the quality and usage possibility of groundwater in the Çavuşçayı basin and suggest the best water structure for the groundwater use. Results from hydrochemical analyses reveal that groundwater is mostly affected by salty (Na+–Cl) waters of the Incik Formation and brackish (Ca2+, Mg2+–SO 4 2− ) waters of the Bayındır Formation. The Alibaba saltpan discharged (2 l/s) from the Incik Formation is used for salt production. In the basin, salinity risk increases with depth and along the groundwater flow direction. Therefore, shallow water and trenches opened in the alluvium aquifer at the east of the basin were determined to yield suitable water with no Na+ and Cl contamination. Following the heavy rainy period, waters of less salinity and conductivity are possibly used for agriculture.  相似文献   

14.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

15.
The hydrochemical characteristics and quality of groundwater in Lokoja basement area have been evaluated based on different indices for assessing groundwater for drinking and irrigation purposes. Twenty groundwater samples were collected and analyzed for physicochemical parameters, major ions and heavy metals. The results revealed that the groundwater is slightly alkaline, with little variations in chemical composition. For example, electrical conductivity (EC) ranges from 242μS/cm to 1835μS/cm. The abundance of the major ions is in the order of Ca2+ >Na+>Mg2+>K+> Fe2+/3+ = HCO3 >Cl? >NO3 >SO4 >PO4. Based on the hydrochemical data, four hydrochemical facies were identified namely, Ca-Mg-HCO3, Na-K-HCO3, Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 and these facies depict groundwater recharge zone, transition flow zone, deep flow zone and mixed water zone respectively. Groundwater from the area is unsuitable for drinking and domestic purposes as some of the ions and heavy metals of health concerns are well above the stipulated guideline values. Irrigation water quality indicators (salinity, Na % and Mg %), reveal that the groundwater is unsuitable for irrigation purposes. Interpreted statistical analysis reveals that the groundwater chemical compositions are controlled predominantly by weathering of litho units of the basement rocks and by drainage from domestic wastes.  相似文献   

16.
The hydrogeochemical study of groundwater in Dumka and Jamtara districts has been carried out to assess the major ion chemistry, hydrogeochemical processes and groundwater quality for domestic and irrigation uses. Thirty groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, anions (F?, Cl?, NO3 ?, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). The analytical results show the faintly alkaline nature of water and dominance of Mg2+ and Ca2+ in cationic and HCO3 ? and Cl? in anionic abundance. The concentrations of alkaline earth metals (Ca2+?+?Mg2+) exceed the alkali metals (Na+?+?K+) and HCO3 ? dominates over SO4 2??+?Cl? concentrations in the majority of the groundwater samples. Ca?CMg?CHCO3 is the dominant hydrogeochemical facies in 60?% of the groundwater samples, while 33?% samples occur as a mixed chemical character of Ca?CMg?CCl hydrogeochemical facies. The water chemistry is largely controlled by rock weathering and ion exchange processes with secondary contribution from anthropogenic sources. The inter-elemental correlations and factor and cluster analysis of hydro-geochemical database suggest combined influence of carbonate and silicate weathering on solute acquisition processes. For quality assessment, analyzed parameter values were compared with Indian and WHO water quality standards. In majority of the samples, the analyzed parameters are well within the desirable limits and water is potable for drinking purposes. Total hardness and concentrations of TDS, Cl?, NO3 ? , Ca2+ and Mg2+ exceed the desirable limits at a few sites, however, except NO3 ? all these values were below the highest permissible limits. The calculated parameters such as sodium adsorption ratio, percent sodium (%Na) and residual sodium carbonate revealed excellent to good quality of groundwater for agricultural purposes, except at few sites where salinity and magnesium hazard (MH) values exceeds the prescribed limits and demands special management.  相似文献   

17.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

18.
The nitrate of groundwater in the Gimpo agricultural area, South Korea, was characterized by means of nitrate concentration, nitrogen-isotope analysis, and the risk assessment of nitrogen. The groundwaters belonging to Ca–(Cl + NO3) and Na–(Cl + NO3) types displayed a higher average NO3 concentration (79.4 mg/L), exceeding the Korean drinking water standard (<44.3 mg/L NO3 ). The relationship between δ18O–NO3 values and δ15N–NO3 values revealed that nearly all groundwater samples with δ15N–NO3 of +7.57 to +13.5‰ were affected by nitrate from manure/sewage as well as microbial nitrification and negligible denitrification. The risk assessment of nitrate for groundwater in the study area was carried out using the risk-based corrective action model since it was recognized that there is a necessity of a quantitative assessment of health hazard, as well as a simple estimation of nitrate concentration. All the groundwaters of higher nitrate concentration than the Korean drinking water standard (<44.3 mg/L NO3 ) belonged to the domain of the hazard index <1, indicating no health hazard by nitrate in groundwater in the study area. Further, the human exposure to the nitrate-contaminated soil was below the critical limit of non-carcinogenic risk.  相似文献   

19.
Hydrogeochemical analyses were carried out on groundwater samples collected from 20 producing wells in different parts of the Eastern Niger Delta. Results show that the concentrations of the major cations (Na+, K+, Ca2+, Mg2+) and anions (Cl, SO 4 2– , HCO 3 ) are below the World Health Organization (WHO) standards set for domestic purposes. The occurrence of slightly saline water in certain areas is attributed to local hydrogeological processes occurring in the area. On the basis of the analytical results, two hydrogeochemical facies are delineated. These are calcium-magnesium-chloride-sulfate-bicarbonate (Ca-Mg-Cl-SO4-HCO3) and calcium-sodium-chloride-sulfatebicarbonate (Ca-Na-Cl-SO4-HCO3) to the west and east of the study area, respectively.  相似文献   

20.
The chemistry of the rainwater indirectly reflects the composition of the ions in the atmosphere. The study of the rainwater gains its own importance as it forms the basis for the agricultural, domestic and drinking water. Twelve rainwater samples were collected along the southeastern coast of India during southwest monsoon. The samples were analyzed for the major anions (Cl?, SO4 2?, PO4 3? and HCO3 ?) and cations (Na+, K+, Ca2+ and Mg2+). The majority of the samples reflect acidic pH. The general dominance of the cations is in the order of Na+ > Ca2+ > K+ > Mg2+ and that of anions is HCO3 ? > Cl? > SO4 2? > PO4 3?. The water is classified as calcium bicarbonate to sodium bicarbonate type. The decrease of pH value also increases the pCO2. In order to study the impact of acidic and alkaline species on rainwater, correlation coefficients were determined for establishing the relationship between different ions. Good correlation was established between cations, and sulfate has no correlation with other ions and pH. Factor analysis reveals that land use pattern, marine source and methanogenesis from the tidal influenced mangroves play a major role in determining the rainwater chemistry of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号