首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rice-acreage estimation of Orissa state was carried out using single-date NOAA-AVHRR data. Selection of optimum date of data acquisition for this purpose was studied using data of six acquisition dates viz. October, 3, 12, 21, 29, November 7 and 26, 1989. Comparative performance of MXL classification of two NOAA bands (Band-1: 0.58–0.68 μm and Band-2: 0.73–1.10 μm) and Normalised Difference Vegetation Index (NDVI) derived from these two-band data was examined. Acreage thus estimated was compared against Bureau of Economics and Statistics (BES) estimate of the same year. The acreage estimation obtained by two band classification was closer to BES estimate than that based on NDVI. Data acquired in the month of October have given better estimate for state level rice acreage than that acquired in the month of November.  相似文献   

2.
Considering the requirement of multiple pre-harvest crop forecasts, the concept of Forecasting Agricultural output using Space, Agrometeorology and Land based observations (FASAL) has been formulated. Development of procedure and demonstration of this technique for four in-season forecasts for kharif rice has been carried out as a pilot study in Orissa State since 1998. As the availability of cloud-free optical remote sensing data during kharif season is very poor for Orissa state, multi-date RADARSAT SCANSAR data were used for acreage estimation of kharif rice. Meteorological models have been developed for early assessment of acreage and prediction of yield at mid and late crop growth season. Four in-season forecasts were made during four kharif seasons (1998-2001); the first forecast of zone level rice acreage at the beginning of kharif crop season using meteorological models, second forecast of district level acreage at mid growth season using two-date RADARSAT SCANSAR data and yield using meteorological models, third forecast at late growth season of district level acreage using three-date RADARSAT SCANSAR data and yield using meteorological models and revised forecast incorporating field observations at maturity. The results of multiple forecasts have shown rice acreage estimation and yield prediction with deviation up to 14 and 11 per cent respectively. This study has demonstrated the potential of FASAL concept to provide inseason multiple forecasts using data of remote sensing, meteorology and land based observations.  相似文献   

3.
Acreage estimation of Rabi sorghum crop in Ahmadnagar, Pune and Solapur districts of central Maharashtra has been attempted using synchronously acquired Landsat MSS and TM data of 1987–88 season and IRS LISS-I data of 1988–89 season; in conjuction with near-synchronous ground truth data. The remote-sensing-based acreage estimations for the districts were compared with the respective estimates by Bureau of Economics and Statistics (BES). As the acreages were underestimated with the classification of standard four-band MSS data, the atmospheric correction of fourband MSS data and normalised differencing (ND) of the atmospheric-corrected MSS data were attempted. The main observations are: (1) the use of Landsat MSS data results in underestimation of sorghum acreage in comparison with BES estimation, (2) the atmospheric correction and ND transformation of MSS data are necessary for bringing acreage estimates in agreement with BES estimates, (3) Mid-IR data in band 1.55 to 1.75 μm are useful in improving the separability of land-use classes, and (4) remote sensing data with radiometric sensitivity comparable to LISS-I or Landsat TM and Signal-to-Noise ratios comparable to LISS-I data are suitable for accurate acreage estimation of sorghum.  相似文献   

4.
A national level project on kharif rice identification and acreage estimation is being carried out successfully for several states in the country. A similar methodology based on the temporal profile for identification and delineation of various land cover classes has been followed for the Rabi rice acreage estimation. To define rabi rice, rabi season in India starts from November — February to March — June. Though the main growing season is predominantly winter but the uncertainty of getting cloud free data during the season has resulted in the use of microwave data. A feasibility study was taken up for early forecasting of the rabi rice area using microwave data. Hierarchical decision rule classification technique was used for the identification of the different land cover classes. Land preparation, puddling and transplantation were the reasons for the specific backscatter of rice growing areas. The increase or decrease in the SAR backscatter due to progress in the crop phenology or due to delayed sowing respectively forms the basis for identifying the rice areas. In addition the potential of optical data of a later date has been utilized in the form of various indices from bands including MIR to distinctly separate the late sown areas and also the puddled areas from other areas. This study emphasizes the synergistic use of SAR and optical data for delineating the rabi rice areas which is of immense use in giving an early forecast.  相似文献   

5.
The acreage and yield of mustard crop in Rajasthan shows year to year variation. In the present study CAPE, analysis by incorporating digital stratification with current season data and comparison of coefficient variation (CV) at district level using conventional stratification with previous season data was undertaken. The stratification approach using current year’s data for mustard acreage estimation was adopted during 1994-95 and 1995-96 crop seasons and regional CV of less than 2 per cent was attained. A comparison of CV at district level for the years 1994-95 and 1995-96 with those obtained in previous two seasons (1992-93, 1993-94) indicated considerable improvement in precision (lower CV) is 7 out of 11 study districts. Mustard acreage estimate for Bharatpur (1995-96) had CV of 10.1 percent when conventional approach (past year data) for stratification was used. However, with the use of current year data for stratification CV reduced to 4.4 per cent The study suggests that use of in-season data for stratification improves precision for acreage estimation of crops like mustard which has high year to year variation in area.  相似文献   

6.
A hydrogeomorphic approach is used in analyzing hydrologic conditions in the Mehsana and Banaskantha districts of Gujarat state. Using Landsat images, it was possible to delineate geological units, hydrogeomorphic features and vegetation density levels on a regional scale. A relationship between hydrogeomorphic features and vegetation density levels along with ground based hydrologic data was established in Mehsana district and the same was extended to the adjoining Banaskantha district. The ground water potential areas identified were from alluvium and piedmont zone. On the basis of different vegetation density levels, these areas were further subdivided into three different potential zones as regards the availability of groundwater viz. good, fair and poor. The applicability of the remotely sensed data has been found quite useful in quick identification of regional hydrogeomorphic setting of the area.  相似文献   

7.
Rice is one of the most important foodgrains grown in India. Attempts have been made to estimate kharif rice acreage of Orissa state since 1986 using digital remote sensing data from Landsat MSS/TM and/or IRS-1A. Accuracies of the estimates obtained have been evaluated against BES (Bureau of Economics and Statistics) estimate. This paper describes the methodology adopted for rice acreage estimation of Orissa state, the results obtained for three years, i.e. 1986–87, 1988–89 and 1989–90, and their accuracy.  相似文献   

8.
基于对地抽样总量控制下的玉米种植面积提取   总被引:4,自引:0,他引:4  
王双  朱秀芳  潘耀忠  徐超  李乐 《遥感学报》2009,13(4):701-714
提出了一种基于统计抽样总量控制下的中高分辨率遥感影像玉米种植面积信息提取方法, 该方法首先利用分层抽样技术对调查目标总体(玉米)进行分层抽样;然后对抽样小区进行目视解译, 反推区域总量真值;最后在总量控制下进行区域目标作物的空间分布提取。以河北省三河市中部地区的部分影像为研究区, 以该区2006-08-21的10m分辨率的SPOT 5多光谱影像为基础数据进行了试验研究。结果表明该方法基于群样本检验的总体精度达到93.8%, Kappa系数达到0.88, 均高于最大似然监督分类结果的精度。另外, 所提出的方  相似文献   

9.
中国农情遥感速报系统   总被引:49,自引:3,他引:49  
吴炳方 《遥感学报》2004,8(6):481-497
介绍了中国农情遥感速报系统的建设情况 ,系统内容包括农作物长势监测、农作物种植面积监测、农作物单产预测与粮食产量估算、作物时空结构监测和粮食供需平衡预警等。简要介绍了 1998年以来中国农情遥感速报系统在监测内容与监测范围、监测频率、技术发展以及质量控制与过程检验体系建立等方面的进展 ,并就中国农情遥感速报系统的发展方向提出了展望。  相似文献   

10.
Desertification is a global challenge being experienced across countries irrespective of their levels of development. Desertification is a complex negative process involving both natural and human components in terms of their socio-economic attainments. Hence, for identification and assessment of the process, pattern, magnitude and possible impacts of desertification, a multi-disciplinary approach with inter-disciplinary framework of analysis is essential. This study has made such an attempt to develop a comprehensive desertification vulnerability assessment Model on the basis of multi-variate Principal Component Analysis along with the Geographic Information System framework by using natural and socio-economic resources data inputs from census, satellite data and other sources. Bellary district, located in a rapidly growing southern state of India, Karnataka which is afflicted with various natural and development issues such as droughts, backwardness, haphazard mining, over irrigation, and associated effects of land degradation, siltation and water pollution has been chosen for the study. The inter-disciplinary framework based desertification vulnerability assessment model has assessed that 1379.198 km2 area (15.55%) of Bellary district is prone to desertification (based on the satellite data IRS LISS III data of Dec 2005, Feb 2006, March 2006 and April 2006). In addition, 3229.337 km2 (36.40%) is under moderate vulnerability which is fragile. Hence, unless proper development intervention and conservation measures are taken well in advance, almost more than half of Bellary district (51.95%) will be vulnerable to desertification. Spatially, the talukas that are seriously affected and that require development intervention on high priority are: Sandur, Kudligi, Hospet and Bellary which are the prime talukas of the district.  相似文献   

11.
Synthetic Aperture Radar (SAR) data from the European Remote Sensing Satellite (ERS-1) acquired in July, October and November, 1992 covering the kharif season of the region were used separately and in combination to identify the major crops and for estimation of their acreage before harvest Separability indices were calculated for major cover types and it was found that single-date SAR data cannot be used for accurate identification of various crops. Multi-temporal colour composite facilitated better identification of crop types. Comparison of area estimates made with ERS-1 SAR and IRS-1B LISS II data showed that the commonly used digital data analysis techniques (per pixel classifiers) are not adequate for accurate estimation of crop acreage using SAR data.  相似文献   

12.
Various indicators derived from thematic maps have been widely used to determine the strata needed to perform stratified sampling. However, these indicators typically do not quantify the spatial errors in the crop thematic maps that are needed to reduce the uncertainty. To address this lack of error information, this paper introduces a hybrid entropy indicator (HEI). Two conventional indicators, the acreage indicator (AI) and the fragmentation indicator (FI), were also evaluated to compare the results of the three indicators in a homogeneous agricultural area (Pinghu, PH) and a heterogeneous agricultural area (Zhuji, ZJ). The results show that HEI performs the best in heterogeneous areas with the lowest coefficient of variation (CV) (as low as 1.59%) and also has the highest estimation accuracy with the lowest standard deviation of estimation. For both areas, the performances of HEI and AI are very similar, and better than FI. These results highlight that the HEI should be considered as an effective indicator and used in place of AI and FI to help improve sampling efficiency of crop acreage estimation, while FI is not recommended. Furthermore, the positive performance achieved using HEI indicates the potential for incorporating thematic map uncertainty information to improve sampling efficiency.  相似文献   

13.
I he aim of the piesent study was to suggest an approach for national level acreage estimation for wheat using satellite remote sensing data and demonstrate its perfromantee Multi-date moderate resolution (188 m) IRS-IC WiFS data sets were used as the core data Sampie segment approach with stratified random sampling was used for the data analysis For making meaningful comparisons over time, multi-date sets were geometncally registered and radiometrically normalised by extracting pseudo-invariant Features and performing regression analysis on the digital numbers of such features The corrected multi-temporal data sets were used in hierarchical classification scheme. The results of this exercise are presented. It appeals that there is an overestimatoin of wheat acreage The sampling effieieney was also low, indicating need to improve sampling strategy Some of the problems encountered and the corrections planned to overcome them are also discussed  相似文献   

14.
In North Korea, reliable and timely information on crop acreage and spatial distribution is hard to obtain. In this study, we developed a fast and robust method to estimate crop acreage in North Korea using time-series normalized difference vegetation index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. We proposed a method to identify crop type based on NDVI phenology features using data collected in other areas with similar agri-environmental conditions to mitigate the shortage of ground truth data. Eventually the classification map (MODIScrop) was assessed using the Food and Agriculture Organization (FAO) statistical data and high-resolution crop classification maps derived from one Landsat scene (LScrop). The Pareto boundary method was used to assess the accuracy and crop distribution of the MODIScrop maps. Results showed that acreage derived from the MODIScrop maps was generally consistent with that reported in the FAO data (a relative error <4.1% for rice and <6.1% for maize, and <9.0% for soybean except for in 2004, 2008, and 2009) and the maps derived from the LScrop (a relative error about 5% in 2013, and 7% in 2008 and 2014). The classification accuracy reached 74.4%, 69.8%, and 73.1% of the areas covered by the Landsat images in 2008, 2013, and 2014, respectively. This indicates that features derived from NDVI profiles were able to characterize major crops, and the approaches developed in this study are feasible for crop mapping and acreage estimation in regions with limited ground truth data.  相似文献   

15.
基于两个独立抽样框架的农作物种植面积遥感估算方法   总被引:34,自引:15,他引:34  
吴炳方  李强子 《遥感学报》2004,8(6):551-569
通过分析遥感技术在中国农作物种植面积估算中所遇到的难点 ,针对运行化的农作物遥感估产系统对主要农作物种植面积估算的需求 ,提出在农作物种植结构区划的基础上 ,采用整群抽样和样条采样技术相结合的方法 ,进行农作物种植面积估算。整群抽样技术利用遥感影像估算农作物总种植成数 ,样条采样是一种适合中国农作物种植结构特征的采样技术 ,用于调查不同农作物类别在所有播种作物中的分类成数。在中国现有的耕地数据库基础上 ,根据两次抽样获得的成数 ,计算得到具体某一种农作物类别的种植面积。最后给出了 2 0 0 3年早稻种植面积估算的实例。  相似文献   

16.
In the present study an attempt has been made to estimate acreage and condition of tea plantations by using satellite based digital remotely sensed data in visible, near infra-red and middle infra-red spectral regions, in the Nilgiri district of Tamilnadu state. Landsat MSS and TM data, acquired on Dec. 26, 1990 were used in the analysis, Different spectral band combinations, Landsat MSS (1234), TM (1234), TM (2345) and TM (123457) were used for identification of tea plantations. District-boundary-overlaying approach with complete enumeration of digital data was used for estimation of tea acreages. Condition assessment of tea plantations is based on the Greenness Index. Use of Landsat MSS data resulted in an underestimation of area under tea whereas the acreages estimated by using TM spectral band combinations 1234 and 2345 compared closely with the estimates of Department of Horticulture (DOH). The distribution pattern of various condition classes of tea plantations compared well with the prevailing ground conditions as observed during post-classification field survey in September 1992 in the district.  相似文献   

17.
Recent developments in remote sensing technology, in particular improved spatial and temporal resolution, open new possibilities for estimating crop acreage over larger areas. Remotely sensed data allow in some cases the estimation of crop acreage statistics independently of sub-national survey statistics, which are sometimes biased and incomplete. This work focuses on the use of MODIS data acquired in 2001/2002 over the Rostov Oblast in Russia, by the Azov Sea. The region is characterised by large agricultural fields of around 75 ha on average. This paper presents a methodology to estimate crop acreage using the MODIS 16-day composite NDVI product. Particular emphasis is placed on a good quality crop mask and a good quality validation dataset. In order to have a second dataset which can be used for cross-checking the MODIS classification a Landsat ETM time series for four different dates in the season of 2002 was acquired and classified. We attempted to distinguish five different crop types and achieved satisfactory and good results for winter crops. Three hundred and sixty fields were identified to be suitable for the training and validation of the MODIS classification using a maximum likelihood classification. A novel method based on a pure pixel field sampling is introduced. This novel method is compared with the traditional hard classification of mixed pixels and was found to be superior.  相似文献   

18.
The National Agricultural Statistics Service (NASS) of the US Department of Agriculture (USDA) produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, crop-specific, land cover map. CDL program inputs include medium resolution satellite imagery, USDA collected ground truth and other ancillary data, such as the National Land Cover Data set. A decision tree-supervised classification method is used to generate the freely available state-level crop cover classifications and provide crop acreage estimates based upon the CDL and NASS June Agricultural Survey ground truth to the NASS Agricultural Statistics Board. This paper provides an overview of the NASS CDL program. It describes various input data, processing procedures, classification and validation, accuracy assessment, CDL product specifications, dissemination venues and the crop acreage estimation methodology. In general, total crop mapping accuracies for the 2009 CDLs ranged from 85% to 95% for the major crop categories.  相似文献   

19.
农情遥感信息与其他农情信息的对比分析   总被引:11,自引:0,他引:11  
农情信息多种多样 ,来源不同 ,分散于各个部门或单位 ,缺乏相互交换与验证 ,综合分析与集成不够 ,特别是遥感信息为经济领域决策服务的渠道不通畅。为更好地应用各种信息 ,必须加强信息综合分析。对耕地面积、作物面积、作物单产、作物长势、粮食产量等几种农情信息中不同来源的信息进行了初步对比分析 ,肯定了遥感监测农情信息在客观性、时空连续性、可对比与可预测、低成本等几个方面的优势 ,同时也分析了遥感信息的不足和局限。认为遥感信息与其他信息不是互相替代的关系 ,而是互相补充、互相验证的关系。只有通过多源农情信息的综合分析和集成 ,才能更全面准确地反映农情。  相似文献   

20.
 One of the most basic and important tools in optimal spectral gravity field modelling is the method of Wiener filtering. Originally developed for applications in analogue signal analysis and communication engineering, Wiener filtering has become a standard linear estimation technique of modern operational geodesy, either as an independent practical tool for data de-noising in the frequency domain or as an integral component of a more general signal estimation methodology (input–output systems theory). Its theoretical framework is based on the Wiener–Kolmogorov linear prediction theory for stationary random fields in the presence of additive external noise, and thus it is closely related to the (more familiar to geodesists) method of least-squares collocation with random observation errors. The main drawback of Wiener filtering that makes its use in many geodetic applications problematic stems from the stationarity assumption for both the signal and the noise involved in the approximation problem. A modified Wiener-type linear estimation filter is introduced that can be used with noisy data obtained from an arbitrary deterministic field under the masking of non-stationary random observation errors. In addition, the sampling resolution of the input data is explicitly taken into account within the estimation algorithm, resulting in a resolution-dependent optimal noise filter. This provides a more insightful approach to spectral filtering techniques for noise reduction, since the data resolution parameter has not been directly incorporated in previous formulations of frequency-domain estimation problems for gravity field signals with discrete noisy data. Received: 1 November 2000 / Accepted: 19 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号