首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed information on the kinematics and amount of deformation the host rock experienced. Measured fault orientation (α), drag angle (β) and the ratio of the thickness of deflected layers at the fault (L) and further away (T) can be compared with α, β and L/T values that are calculated with a simple analytical model. Using graphs or a numerical best-fit routine, one can then determine the kinematic vorticity number and initial fault orientation that best fits the data. The proposed method was successfully tested on both analogue experiments and numerical simulations with BASIL. Using this method, a kinematic vorticity number of one (dextral simple shear) and a minimum finite strain of 2.5–3.8 was obtained for a population of antithetic faults with associated drag folds in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the easternmost Pyrenees, Spain.  相似文献   

2.
Strong tectonic earthquakes within the crust always occur on already existing faults, and they have the property of a shear rupture. Such earthquakes with surface-wave magnitudes M < 7 obviously have a geometric similarity. Because of this similarity and the validity of the Gutenberg and Richter's energy—magnitude relation, the expression M = 2 log10 L + const., with L = focal length, is valid.The expression LmaxL* for the maximum focal length, is also valid if L* is the length of the rectilinear extent of the seismic line on which the maximum earthquake occurs. The bounds of L* may be given by sharp bends and/or by traversing deep faults. Thus the maximum imaginable earthquake on a seismic line with the length L* has the magnitude Mmax = 2 log10 L* + const.For the investigated region — the Alps and adjacent areas — from the data of recent and historical strong earthquakes, it follows that Mmax = 2 log10 L* + 1.7, if L* is measured in kilometres. These limiting values lie in the centre-field of the magnitude range for maximum earthquakes, published by Shebalin in 1970. By the aid of this equation it is also possible to assess the upper limiting value of the accompanying maximum scale intensity.  相似文献   

3.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

4.
This paper analyzes the emergence of channeling and preferential flow in heterogeneous porous media. Connectivity is studied through the statistical characterization of the length L of connected, high velocity patterns in both two-dimensional and three-dimensional media. A simple, physically based, fully analytic expression for the probability of L has been derived. It is found that the length L of connected, high velocity channels is flow-related and can be much larger than the conductivity integral scale I. Heterogeneity has a considerable impact on emergence of channeling patterns; connectivity is considerably enhanced in three-dimensional structures as compared to two-dimensional ones. The strong dependence on space dimensionality is a warning against the use of two-dimensional numerical models for assessing connectivity and preferential flow in heterogeneous media. The probability p(L) is employed in order to determine the early arrivals of the breakthrough curve at a given control plane; the simple model can be used for a preliminary assessment of preferential flow. Comparison with numerical simulations confirms that the main connectivity features were adequately captured by the model.  相似文献   

5.
Evolution of ESR spectra with thermal annealing at different temperatures is studied for a monocrystal calcite taken in the Orgnac III site. Up to 20 ESR lines are recognized from the angular dependence of these lines. These lines are compared with the ESR lines observed for powder and rotating monocrystal calcites.The h1 line (g = 2.0057) and h3 line (g = 2.0007) are isotropic or nearly isotropic and are due to the electrons trapped in the amorphous region formed by fission tracks or alpha-ray recoil nuclei. The h2 line (g = 2.0021) is a composite of several different lines.  相似文献   

6.
Summary. We study the problem of boulder encounter during shaft excavation and the bias that results from directly using statistics from borehole samples without correction for probe diameter. We specifically focus on two quantities, the rate of boulder encounters λ1 and the total length of obstructed shaft drilling L 1. Assuming that boulders have spherical shape or cylindrical shape of a particular type, we evaluate how λ1 and the mean and variance of L 1 depend on the shaft diameter, the distribution of the boulder diameter, and the minimum boulder diameter that constitutes an obstruction to drilling. The statistics on L 1 assume that the boulder centers are distributed according to a homogeneous Poisson process in space. Finally, we briefly discuss the problem of inferring the spatial density of boulders and their diameter distribution from borehole data. Both λ1 and L 1 increase significantly with increasing shaft diameter; hence the uncorrected statistics from borehole samples severely under-predict these two quantities during large-shaft drilling. Moreover, for typical parameter values, the mean value of L 1 may be a significant fraction of the total shaft length.  相似文献   

7.
The U.S. Geological Survey conducts repeated geodimeter surveys of trilateration networks in central California in order to study the processes of slip and strain accumulation along the San Andreas fault. The precision of distance measurement is described by a standard deviation where a = 3mm, b = 2 · 10−7, and L is the line length. Within the precision of measurement, no anomalous strain episodes preceding earthquakes or even strain discontinuities at the time of earthquakes were detected from repeated measurements of lines near the epicenters of small (magnitude 4.5–5.1) earthquakes. Annual measurements of small (5-km aperture) strain polygons near the San Andreas fault have not proved strain accumulation in a 3-year period. Repeated measurements of longer lines over periods of 8 to 14 years indicate changes that cannot be attributed to fault slip and must represent strain accumulation at the level of a few parts in 107 per year.  相似文献   

8.
Diagrams giving plagioclase and sanidine fractionation paths and liquid fractionation lines under conditions of ideal water-buffered fractional crystallization in the ternary feldspar system were constructed graphically using topological reasoning, and experimental data and calculated phase relationships from the literature. The liquidus lines and solidus or solvus paths are unique at constant P and a H 2O. The composition of a liquid evolves with time and moves along a fractionation line by removal of successive crystal fractions, whereas the compositions of each of the crystal fractions lie on and define a solidus or solvus path. Most but not all such water-buffered lines and paths differ only slightly from those in which water is free to build up during crystallization and a H 2O to increase, as in many rocks. Liquid compositions lying along liquidus fractionation lines are not normally preserved, unless erupted as aphyric lavas. The solidus or solvus paths may be preserved either as overgrowth zones in crystals (zoning paths) or as a series of crystal fractions in layered intrusions. The topologies of the lines and paths depend mainly on the nature of the two-feldspar boundary line separating the plagioclase and sanidine fields which is a function of P H 2O or a H 2O at constant P; increases in either progressively lower the liquidi and solidi and cause larger intersections of the solidi with the solvus. One-feldspar solidus paths at high P and a H 2O are simple, whereas they are complex and may bend back on themselves at low P H 2O or low a H 2O at high P. Two-feldspar paths may be simultaneous (cotectic) or sequential (peritectic). The former are simple and do not meet at high P and a H 2O, the critical solution line lying in the gap; they are complex and may bend back or overlap at low P H 2O or low a H 2O at high P, the position of the critical solution line being hard to determine. Liquids which have simultaneously fractionated two feldspars may fractionate only one towards the end, crystallization changing from subsolvus to hypersolvus. Sequential paths may involve overgrowth of an early feldspar by a later one, usually sanidine overgrowths on plagioclase, but plagioclase overgrowths on sanidine occur. These complexities explain in part the difficulties of unravelling the textural and compositional relationships of ternary feldspars in water-poor felsic igneous rocks (even in the absence of alteration or complex magma dynamics) and of trying to deduce phase relationships from natural occurrences of feldspars.C.R.P.G. contribution number 948  相似文献   

9.
Only one part of the EPR lines of a kaolinite spectrum of structural Fe3+ is clearly observable because of the overlapping of other lines with other spectra. For this reason, to determine the structural Fe3+ concentration we used the line near g=9, although it is not intense. A standard is needed: powders of ZnS containing given concentrations of Mn2+ (isoelectronic to Fe3+) were used for this purpose. Using the simulations of the EPR spectra, the concentration (number of Fe3+ per Al3+) is determined; it is in the range 10?5 to 10?4 for our samples. Considering that the crystal-field disorder around Fe3+ is responsible for line broadening, we looked for a possible effect of the broadening on the intensity of the EPR spectra. This effect is taken as a distribution of the parameter λ=B22/B20. The influence of the parameter λ and its statistical distribution on the position, shape, width and intensity of the EPR line has been calculated using simulation procedures. The correction due to the disorder on the calculated concentration is of the same order of magnitude as the precision measurement. This method can be applied for other kaolinites by comparing the area of their g=9 lines with known ones.  相似文献   

10.
The patterns of deformed early lineations (L1) over later folds (F2) can be classified into several morphological types depending on the nature of variation of L1 F2 over the folds. The field relations indicate that the folds under consideration are neither shear folds nor parallel folds modified by flattening. The lineation patterns are therefore interpreted in terms of an empirical model of simultaneous buckling and flattening in which it is assumed that (i) the central surface of the folded layer remains a sine curve in transverse profile, (ii) the ratio of rates of buckle shortening to homogeneous strain is proportional to sin 2a, with a as the dip angle and (iii) the progressive deformation is coaxial with the Z-axis of bulk strain parallel to the planar segments of the early folds. The model gives an insight into the relative importance of different physical factors which control the development of dissimilar lineation patterns. Not all lineation patterns are explicable by this simplified model. Thus complex patterns with variable L1 F2 along the fold axis may develop by a progressive rotation of the geometrically defined fold hinge through successive material lines. The theoretical results have been applied to interpret the lineation patterns in Central Rajasthan, India. It is concluded that L1 was initially very close to the E-ESE trending subhorizontal Z-axis of bulk deformation during F2-folding and that the X-axis was subhorizontal or gently plunging with a N-NNE trend.  相似文献   

11.
Fluorine plays an important role in magmatic and hydrothermal processes, but due to its low abundance in geological samples determining F is difficult by electron probe microanalysis. By using a W‐Si multi‐layered pseudocrystal as the diffraction crystal instead of thallium acid phthalate (TAP), count rates were considerably higher, which however introduced spectral interferences between FKα and FeLα and MgKβ lines when normal integral mode is applied. In this study, we developed a protocol using a W‐Si multi‐layered pseudocrystal for measuring accurately trace level F in both minerals and glasses. First, we used differential mode with an optimised PHA (pulse height analysis) setting in signal processing, instead of normal integral mode, which completely eliminated the second‐order MgKβ line. Second, the overlap of the first‐order FeLα on FKα peak, which cannot be filtered by modifying the PHA setting, was calibrated quantitatively using F‐free minerals and silicate glasses. Applying this two‐step method, F was determined in a number of reference glasses, as well as in glasses synthesised from powders of the rock reference materials AC‐E, GS‐N and DR‐N. Our data are consistent within error with F concentrations determined by other methods, demonstrating the reliability of this method.  相似文献   

12.
The probability of landslide volume, V L , is a key parameter in the quantitative hazard analysis. Several studies have demonstrated that the non-cumulative probability density, p(V L ), of landslide volumes obeys almost invariably a negative power law scaling of p(V L ) for landslides exceeding a threshold volume and a roll-over of small landslides. Some researchers attributed the observed roll-over to under-sampling of data, while others relate it to a geo-morphological (physical) property of landslides. We analyzed 15 sets of a complete landslide inventory containing shallow debris slides (2 ≤ V L  ≤ 3.6 × 103 m3) with sources located on cut slopes along a 17-km-long railroad corridor. The 15 datasets belong to individual years from 1992 to 2007. We obtained the non-cumulative probability densities of landslide volumes for each dataset and analyzed the distribution pattern. The results indicate that for some datasets the probability density exhibits a negative power law distribution for all ranges of volume, while for others, the negative power scaling exists only for a volume greater than 10 m3, with scaling exponent β varying between 0.96 and 2.4. When the spatial distribution of landslides were analyzed in relation to the terrain condition and triggering rainfall, we observed that the number of landslides and the range and the frequency of volumes vary according to the changes in local terrain condition and the amount of rainfall that trigger landslides. We conclude that the probability density distribution of landslide volumes has a dependency on the local morphology and rainfall intensity and the deviation of small landslides from power law, i.e., the roll-over is a “real effect” and not an artifact due to sampling discrepancies.  相似文献   

13.
构造置换及其控矿规律——以吉林板石沟铁矿为例   总被引:1,自引:0,他引:1       下载免费PDF全文
 强烈的塑性变形使华北地台东北部太古宙鞍山群中的吉林板石沟铁矿发生强烈的构造置换;造成原始仅有二三层的铁矿褶皱重复,在X(包络线)、Y(枢纽线)方向均被拉断,形成透镜状的复式褶皱勾状体。现有的19个矿组均为这种复式褶皱的转折端,并多呈"Z"型不对称形式。根据以上控矿规律本文提出两个找矿方向,一是包络线方向,另一是枢纽线方向,对1、3矿组具体地做了勘探设计。目前本文的勘探设计已得到勘探验证,新增铁矿储量数千万吨。  相似文献   

14.
Closed Form Solutions of the Two-Dimensional Turning Bands Equation   总被引:1,自引:0,他引:1  
The turning bands method generates realizations of isotropic Gaussian random fields by means of appropriately summed line processes. For two-dimensional simulations the relation between the isotropic correlation function of the random field and the correlation function to be simulated along the lines is given by an integral equation of Abel type. We present closed form solutions of this integral equation for almost all two-dimensional correlation models encountered in practice and discuss their numerical implementation. As an additional benefit, our tables and illustrations serve as a concise guide to correlation models useful in geostatistics.  相似文献   

15.
The estimation of the peak metamorphic temperature by Raman spectroscopy of carbonaceous material (RSCM) is influenced by several bias sources grouped in measuring conditions, spectral processing and sample heterogeneity. The measuring conditions (selected excitation wavelength) and the operator bias during spectral processing have a pronounced impact on the temperature estimate and thus on the comparability and portability of thermometric data obtained by RSCM. Several calibration lines of RSCM geothermometers are published already, but no standardised approach exists. Samples of carbonaceous material bearing metasediments with well‐established metamorphic conditions of the central and western Alps compile a reference series. By applying an automated, iterative and randomised curve‐fitting approach, a consistent and user input‐independent RSCM geothermometer is presented, which covers peak metamorphic temperatures from ca. 160 to 600 °C. The method is hardware independent because the measuring conditions bias is excluded by the use of the reference series and the automated curve‐fitting approach reduces the spectral processing bias effectively, increasing the method's comparability and portability. By distributing the reference series and the automated curve‐fitting software, a laboratory will be able to derive a laboratory specific calibration line for the RSCM geothermometer.  相似文献   

16.
Most of the existing methods of strain analysis can estimate strain in a single form of distorted brachiopod, or trilobite provided independent evidence, such as the association of the fossil with cleavage and/or stretching lineation is available for inferring the direction of maximum principal strain. This article proposes a simple computer graphics based method and its MATLAB code that determine the minimum amount of strain in a single distorted fossil form even if data for inferring the maximum principal strain direction are lacking. Our method is a rapid computer-graphics alternative to some of the existing analytical methods. In a distorted fossil form of original bilateral symmetry, the relative senses of angular shears along the hinge line and the median line are mutually opposite to each other. It follows, therefore, that the maximum principal strain direction lies within the acute angle between the hinge and the median lines in the plane of the fossil. Using this principle, our method performs several simulations such that each simulation retrodeforms the distorted fossil by assuming a particular orientation, lying within the acute angle between the hinge line and the median line, as the potential direction of the maximum principal strain. Each simulation of retrodeformation yields a potential strain ratio. The distribution of all the potential strain ratios, obtained by assuming different orientations as the potential directions of the maximum strain, is typically a parabola-like curve with a distinct vertex that corresponds to the minimum amount of strain in the distorted fossil. An entirely computer graphical approach is somewhat time-intensive because it involves a large number of retrodeformational simulations. We, therefore, give a MATLAB code, namely, the Minstrain, that rapidly retrodeforms the fossil and determines the minimum strain with precision.  相似文献   

17.
When concerned with spatial data, it is not unusual to observe a nonstationarity of the mean. This nonstationarity may be modeled through linear models and the fitting of variograms or covariance functions performed on residuals. Although it usually is accepted by authors that a bias is present if residuals are used, its importance is rarely assessed. In this paper, an expression of the variogram and the covariance function is developed to determine the expected bias. It is shown that the magnitude of the bias depends on the sampling configuration, the importance of the dependence between observations, the number of parameters used to model the mean, and the number of data. The applications of the expression are twofold. The first one is to evaluate a priori the importance of the bias which is expected when a residuals-based variogram model is used for a given configuration and a hypothetical data dependence. The second one is to extend the weighted least-squares method to fit the variogram and to obtain an unbiased estimate of the variogram. Two case studies show that the bias can be negligible or larger than 20%. The residual-based sample variogram underestimates the total variance of the process but the nugget variance may be overestimated.  相似文献   

18.
Padhy  Simanchal  Mishra  O. P.  Subhadra  N.  Dimri  V. P.  Singh  O. P.  Chakrabortty  G. K. 《Natural Hazards》2013,77(1):75-96

This study discusses the scaling properties of the spatial distribution of the December 26, 2004, Sumatra aftershocks. We estimate the spatial correlation dimension D 2 of the epicentral distribution of aftershocks recorded by a local network operated by Geological Survey of India. We estimate the value of D 2 for five blocks in the source area by using generalized correlation integral approach. We assess its bias due to finite data points, scaling range, effects of location errors, and boundary effects theoretically and apply it to real data sets. The correlation dimension was computed both for real as well as synthetic data sets that include randomly generated point sets obtained using uniform distributions and mimicking the number of events and outlines of the effective areas filled with epicenters. On comparing the results from the real data and random point sets from simulations, we found the lower limit of bias in D 2 estimates from limited data sets to be 0.26. Thus, the spatial variation in correlation dimensions among different blocks using local data sets cannot be directly compared unless the influence of bias in the real aftershock data set is taken into account. They cannot also be used to infer the geometry of the faults. We also discuss the results in order to add constraints on the use of synthetic data and of different approaches for uncertainty analysis on spatial variation of D 2. A difference in D 2 values, rather than their absolute values, among small blocks is of interest to local data sets, which are correlated with their seismic b values. Taking into account the possible errors and biases, the average D 2 values vary from 1.05 to 1.57 in the Andaman–Nicobar region. The relative change in D 2 values can be interpreted in terms of clustering and diffuse seismic activity associated with the low and high D 2 values, respectively. Overall, a relatively high D 2 and low b value is consistent with high-magnitude, diffuse activity in space in the source region of the 2004 Sumatra earthquake.

  相似文献   

19.
We consider the multigrid solution of a discretized singular integral equation whose solution represents the displacement discontinuity distribution across a pressurized crack or the slip on a fault subjected to a prescribed shear stress. The multigrid technique reduces the operation count for a crack model having N degrees of freedom from O(N3) operations for standard stationary iterative methods to O(N2) operations. In the numerical simulations performed the multigrid approach proves to be extremely efficient even for small values of N. We use Fourier analysis to determine the spectral properties of the coarse grid correction process and the effect of a number of different interpolation operators on the multigrid algorithm. We show that the multigrid technique can be combined with the process of lumping remote influences to yield an algorithm that involves O(N) operations. The performance of multigrid iteration in a nonlinear environment is explored by considering seams filled with nonlinear material. For this purpose a segmented multigrid algorithm is developed that allows for different seam constitutive relations to be used along different line segments. The O(N2) operation count characteristic of linear multigrid iteration is shown to persist in this nonlinear environment and the segmented multigrid approach is shown to provide significant computational savings for values of N well within the range for typical problems that occur in practice.  相似文献   

20.
This paper presents results of meticulous laboratory testing and numerical simulations on the effect of reinforcement on the low-strain stiffness and bearing capacity of shallow foundations on dry sand. The effect of the location and the number of reinforcement layers is studied in the laboratory, whereas numerical simulations are used to study the reinforcement-foundation interaction. Laboratory tests show an increase of 100, 200, and 275% not only in bearing capacity but also in low-strain stiffness (linear load–displacement behaviour) of a square foundation when one, two, and three layers of reinforcement are used, respectively. The specimen preparation technique is found to be crucial for the repeatability and reliability of the laboratory results (less than 5% variability). Numerical simulations demonstrate that if reinforcements are placed up to a depth of one footing width (B) below the foundation, better re-distribution of the load to deeper layers is achieved, thus reducing the stresses and strains underneath the foundation. Numerical simulations and experimental results clearly identify a critical zone between 0.3 and 0.5B, where maximum benefits not only on the bearing capacity but also on the low-strain stiffness of the foundation are obtained. Therefore, soil reinforcement can also be used to reduce low-strain vibrations of foundations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号