首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The conditions for video transmission from the panoramic camera of the Mars-3 lander are analyzed. The latter is known to have made the first soft landing on Mars in 1973 during a severe dust storm resulting in damage to the lander. This damage is believed to have reduced the lander’s operation time to 20 s and, apparently, prevented it from achieving the necessary orientation on the surface. If we assume that the lander is lying on its side, then the camera’s panoramic axis would be not vertical, but nearly horizontal. In such a case, we can reproduce, by removing the noise and interferences from the video signal by modern methods, a panoramic fragment, which can help assess the structure of the surface near the landing site of Mars-3.  相似文献   

2.
Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's "eye" was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360?panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.  相似文献   

3.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   

4.
This article provides the main scientific objectives and characteristics of the Phobos-Soil project, intended to fly to the Martian satellite Phobos, deliver its soil samples to the Earth, as well as explore Phobos, Mars, and the Martian environment with onboard scientific instruments. We give the basic parameters of the ballistic scenario of the mission, spacecraft, and some scientific problems to be solved with the help of the scientific instruments installed on the spacecraft.  相似文献   

5.
Of the four spacecraft that the Viking Project put into operation at Mars in the summer of 1976, one continues to acquire data periodically. The missions of the two orbiters were terminated by the depletion of their attitude-control gas: Orbiter 2 in July 1978 and Orbiter 1 in August 1980. Lander 2 was shut down in April 1980 because of degradation of its batteries. Lander 1 is programmed to continue acquiring a modest number of imaging, meteorology, and ranging data periodically until December 1994. During its final year Orbiter 1 continued to produce excellent data from its full complement of instruments—two cameras, two infrared instruments (thermal mapper and water vapor detector), and the radio subsystem. The major emphasis was on photography, with 10,000 images being acquired. These included two very large swaths of high-resolution contiguous coverage of the Martian surface and the completion of the moderate-resolution mapping of nearly the entire surface, as well as miscellaneous other observations. The majority of these images has not been processed and examined, but the others have revealed many previously unobserved features and have greatly enhanced the base for a geological understanding of the planet. The history of Viking mission operations is brought up to date.  相似文献   

6.
Mars environment and magnetic orbiter model payload   总被引:1,自引:0,他引:1  
Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 × 1,000 km), non polar (77° inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an ‘exospheric-upper atmosphere’ package, a ‘magnetic field’ package, and a ‘low-middle atmosphere’ package. Nominal mission duration is one Martian year.  相似文献   

7.
A suite of instruments on the Beagle 2 Mars lander was designed and built in order to investigate the environmental conditions at the landing site. The sensor suite was capable of measuring air temperature at two heights, surface level pressure, wind speed and direction, saltated particle momentum, UV flux (diffuse and direct at five wavelengths), the total accumulated radiation dose and investigating the nature of the oxidising environment. The scientific goals of the instruments are discussed within the context of current understanding of the environmental conditions on Mars, and the instruments themselves are described in detail. Beagle 2 landed on Mars in late 2003, as part of the ESA Mars Express mission. The expected lifetime of the lander on the surface was 180 sols, with a landing site in Isidis Planitia, but has not responded to attempts to contact it, and has now been declared lost. The Environmental Sensor Suite (ESS) was intended to monitor and characterise the current local meteorological parameters, investigating specific areas of scientific interest raised from previous missions, most notably dust transport and transient phenomena, and additionally to add context to the conditions that any possible martian micro-organisms would have to face. The design of the instrument suite was strongly influenced by mass limitations, with eight sensor subsystems having a total mass of approximately 100 g. Although Beagle 2 has been now declared lost, the scientific goals of an Environmental Sensors Suite still remain a valid target for any future astrobiology orientated missions.  相似文献   

8.
Mars-96 mission: Mars exploration with the use of penetrators   总被引:1,自引:0,他引:1  
Within the frames of the Mars-96 Mission the penetrators were first developed for the investigation of the chemical composition and physical properties of the Martian rocks, research into the internal structure of the planet, studying of its surface, atmosphere and climate.The paper briefly describes the penetrator design, the process of its landing and penetration into the Martian surface, items included in the complex scientific instrumentation and their specifications, and principal scientific tasks which can be realized with the use of penetrators.  相似文献   

9.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

10.
火星是人类重要的地外天体探测目标之一,对火星表面进行的探测和研究表明,火星表面曾经存在液态水,水是生命存在的基础,因此,在次表层寻找不同形式的水是目前火星探测的重要科学目标之一。近17年来,欧洲火星快车(Mars Express)上搭载的火星次表层和电离层探测先进雷达(Mars Advanced Radar for Subsurface and Ionosphere Sounding,MARSIS)以及美国火星勘测轨道飞行器(Mars Reconnaissance Orbiter,MRO)上搭载的浅表层雷达(Shallow Subsurface Radar,SHARAD)开展了对火星次表层的大量探测。根据雷达的工作原理,雷达获取的原始回波数据需要经过距离向处理、方位向处理、电离层校正等才能完成成像,从成像数据中提取科学信息,取得众多的科学成果。火星次表层探测雷达的数据处理技术在火星次表层探测上发挥了重要作用,具有很强的代表性和参考价值。综述目前利用雷达对火星次表层展开的探测与研究,介绍了火星次表层探测雷达数据处理技术,列举了取得的部分科学成果,并展望将要投入使用的火星次表层探测雷达。  相似文献   

11.
The planet Mars has many Earth like characteristics, but its evolution is different. An important future step in Mars’ geophysics is to deploy a network of stations at the surface of Mars inorder to study a wide range of properties of this planet, going from its deep interior structure to its atmosphere. Each ground station (small landers) will contain the same scientific instruments/experiments. The collected data will improve our knowledge of the Martian interior, surface and atmosphere, as well as its evolution. An important part of these objectives can only be achieved by a network of surface stations, as a network gives unique possibilities for performing studies of global scale phenomena and studies requiring simultaneous measurements from several sites.  相似文献   

12.
Joel S. Levine 《Icarus》1976,28(2):165-169
The presence of 28% argon on Mars as calculated by Levine and Riegler and indirectly inferred from Soviet Mars-6 lander data has important implications for the outgassing history of H2O, CO2, and N2 on Mars. Even if the terrestrial volatile outgassing ratio is only approximately valid for Mars, then large quantities of H2O [of the order of 105 gcm?2 (about 108 more H2O than is currently present in the Martian atmosphere)] and about 104 gcm?2 of CO2 (about 103 times more CO2 than found at present in the Martian atmosphere) and some 450 gcm?2 of N2 may have outgassed over the history of Mars.  相似文献   

13.
In the frame of a comparison between Earth, Venus, and Mars, a vision on future geodesy missions to Mars is discussed with particular focus on furthering our understanding of the interior, rotation, and orientation of this terrestrial planet. We explain how radioscience instruments can be used to observe the rotation and orientation and therewith to study the deep interior of Mars and its global atmosphere dynamics. Transponders in X-band and Ka-band are proposed with radio links between a lander or a rover and an orbiter around Mars and/or directly to the Earth. The radio budget links are studied in the frame of possible mission constraints and simulations are performed, which show that important information on the interior of Mars can be obtained from the radioscience data. From the observation of Mars’ orientation in space and of tidal effects on a spacecraft orbiting around Mars we show that it is possible for instance to constrain the dimension and composition of the core, the percentage of light element within the core, and to determine the presence of a pressure-induced mineral-phase transition at the bottom of the mantle.  相似文献   

14.
Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.  相似文献   

15.
New instruments on board the Mars Global Surveyor (MGS) spacecraft began providing accurate, high-resolution image and topography data from the planet in 1997. Though data from the Mars Orbiter Laser Altimeter (MOLA) are consistent with hypotheses that suggest large standing bodies of water/ice in the northern lowlands in the planet's past history, Mars Orbiter Camera (MOC) images acquired to test these hypotheses have provided negative or ambiguous results. In the absence of classic coastal features to test the paleo-ocean hypothesis, other indicators need to be examined. Tuyas and hyaloclastic ridges are sub-ice volcanoes of unique appearance that form in ponded water conditions on Earth. Features with similar characteristics occur on Mars. MOLA analyses of these Martian features provide estimates of the height of putative ice/water columns at the edge of the Utopia Planitia basin and within Ophir Chasma of Valles Marineris, and support the hypotheses of a northern ocean on Mars.  相似文献   

16.
The interest towards Mars is nowadays renewed as various satellites, already launched or foreseen for the future, will visit this planet, providing a new wealth of data. In particular, infrared spectroscopic observations need a parallel modelling effort for a proper interpretation of observations. The goal of our modelling is to evaluate the influence of a non negligible fraction of dust particles on intensity and profile of atmospheric Martian spectra. The joint effects of the atmosphere and the surface materials have been also accounted for. For the modelling, a version of the MODTRAN code, expressly modified for application to the Mars environment, has been used. As an example of the materials forming dust dispersed in the atmosphere and on the surface, we have considered andesite. Indices of refraction (n and k) of this material have been derived from laboratory measurements. The obtained results can have an important impact on the interpretation of infrared spectra that instruments such as TES (Thermal Emission Spectrometer), on board the Mars Global Surveyor, and PFS, in the Mars Express mission, will provide.  相似文献   

17.
Mirages on Mars     
The possibility of observing mirages on Mars from the Viking lander cameras is examined. A simple model for the production of both inferior and superior mirages is developed. Assuming the atmospheric index of refraction to be a linear function of density (i.e., temperature), ray curvatures are calculated through layers of large, expected thermal gradient.Assuming the Martian morning inversions of Gierasch and Goody (1968), calculations of ray curvature show the superior mirage to be an unlikely occurrence on Mars since the downward curvature of the ray through the inversion layer is less than the downward curvature of the planet. In order to examine the nature of inferior mirages we select a reasonable expression for temperature profile in the surface layer fitted to the midafternoon, midlatitude summer results of Gierasch and Goody. Integration of the expression for ray curvature yields a relation for the minimum distance between the lander cameras and an inferior mirage as a function of the surface superadiabatic lapse rate. Such calculations indicate that the Viking lander cameras will record inferior mirages at horizontal distances of a kilometer or so from the lander. Given the appearance of an inferior mirage at a measured minimum distance from the observer it should be a simple matter to calculate the corresponding mean temperature lapse rate at the surface.  相似文献   

18.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

19.
20.
Mariner 9 has provided a refutation or reinterpretation of several historical claims for Martian biology, and has permitted an important further characterization of the environmental constraints on possible Martian organisms. Four classes of conceivable Martian organisms are identified, depending on the environmental temperature, T, and water activity, aw: Class I, high T, high aw; Class II, low T, high aw; Class III, high T, low aw; and Class IV, low T, low aw. The Viking lander biology experiments are essentially oriented toward Class I organisms, although arguments are given for the conceivable presence on Mars of organisms in any of the four classes. Organisms which extract their water requirements from hydrated minerals or from ice are considered possible on Mars, and the high ultraviolet flux and low oxygen partial pressure are considered to be negligible impediments to Martian biology. Large organisms, possibly detectable by the Viking lander cameras, are not only possible on Mars; they may be favored. The surface distribution of Martian organisms and future search strategies for life on Mars are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号