首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   

2.
In the frame of a comparison between Earth, Venus, and Mars, a vision on future geodesy missions to Mars is discussed with particular focus on furthering our understanding of the interior, rotation, and orientation of this terrestrial planet. We explain how radioscience instruments can be used to observe the rotation and orientation and therewith to study the deep interior of Mars and its global atmosphere dynamics. Transponders in X-band and Ka-band are proposed with radio links between a lander or a rover and an orbiter around Mars and/or directly to the Earth. The radio budget links are studied in the frame of possible mission constraints and simulations are performed, which show that important information on the interior of Mars can be obtained from the radioscience data. From the observation of Mars’ orientation in space and of tidal effects on a spacecraft orbiting around Mars we show that it is possible for instance to constrain the dimension and composition of the core, the percentage of light element within the core, and to determine the presence of a pressure-induced mineral-phase transition at the bottom of the mantle.  相似文献   

3.
Dissociative recombination (DR) of ionospheric O2+ ions is an important source of suprathermal atomic oxygen in the exosphere as previous studies about the Martian upper atmosphere have shown. Because of the weaker gravitational attraction a hot oxygen corona on Mars should be denser than that observed on Venus. Since the most important mechanism for the production of the hot oxygen atoms in the Martian exosphere is DR, we investigated the variability of this production mechanism depending of solar activity. The Japanese Nozomi spacecraft will have the possibility to detect with the neutral mass spectrometer (NMS) for the first time in-situ the theoretically predicted hot oxygen corona on Mars, if the corona number density above the cold background atmosphere is of the order of 10,000 cm−3. Due to a problem in the propulsion system Nozomi failed its planned arrival rendevouzs with Mars in October 1999 and will, therefore, arrive at the red planet not before January 2004. Solar activity will reach its maximum in 2001, so the related production rate of hot oxygen atoms will be in the medium range during the new arrival date of Nozomi. We used the ionospheric profiles from the Viking mission for low solar activity conditions (F10.7≈70) and the Mariner 9 mission with a solar activity of about 120 for medium solar wind activity. The latter is comparable to the level we expect for the Mars arrival of Nozomi. The resulting influence of the hot oxygen corona number density distribution was calculated with a Monte Carlo technique. This technique is used to compute a hot particle density distribution function. We studied the atomic diffusion process in the Martian atmosphere by simulating the collision probability, particle direction and energy loss after collisions by generating random numbers. Compared to previous studies we have improved the Monte Carlo model by using more and smaller altitude steps and more detailed treatment of particles with a temporary downward motion. This has resulted in an increased amount of collisions and a shift to lower energies in the energy spectrum. Our results show that the hot oxygen component should begin to dominate above the cold background atmosphere at an altitude of about 500 km above the Martian surface. The NMS instrument on board of Nozomi should detect the hot oxygen component after its arrival at Mars in January 2004, at an altitude of about 600 km above the Martian surface. Since the solar activity will decrease during the mission the measurements during the first orbits will be the most significant ones. The first in-situ measurements of the hot oxygen number density would be very important for adjusting atmospheric escape models by separating ballistic, satellite and escape trajectories of the hot oxygen atoms, which are significant for studies of the evolution and solar wind interaction of the Martian atmosphere.  相似文献   

4.
The interest towards Mars is nowadays renewed as various satellites, already launched or foreseen for the future, will visit this planet, providing a new wealth of data. In particular, infrared spectroscopic observations need a parallel modelling effort for a proper interpretation of observations. The goal of our modelling is to evaluate the influence of a non negligible fraction of dust particles on intensity and profile of atmospheric Martian spectra. The joint effects of the atmosphere and the surface materials have been also accounted for. For the modelling, a version of the MODTRAN code, expressly modified for application to the Mars environment, has been used. As an example of the materials forming dust dispersed in the atmosphere and on the surface, we have considered andesite. Indices of refraction (n and k) of this material have been derived from laboratory measurements. The obtained results can have an important impact on the interpretation of infrared spectra that instruments such as TES (Thermal Emission Spectrometer), on board the Mars Global Surveyor, and PFS, in the Mars Express mission, will provide.  相似文献   

5.
This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface.The planet Mars is the center of the discussion.The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation.The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution.Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle.For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle.This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars.  相似文献   

6.
The evolution of the Martian atmosphere and the potential existence of a past hydrosphere is a scientific issue of great interest in planetary research. Although the first missions to Mars had a focus on surface features and atmospheric properties, some of the missions (e.g., The Soviet Mars 2, 3 and 5) also carried instruments addressing the solar wind interaction with the Martian atmosphere and ionosphere and the potential existence of an intrinsic magnetic field on Mars. However, it took until 1989 before a spacecraft, Phobos-2, was able to carry out a more detailed investigation of the solar wind interaction with Mars. Phobos-2 gave valuable data on the Solar wind interaction with Mars during about 2 months of operations, leading to a better understanding of the solar wind impact on a weakly magnetized planet. However, Phobos-2 also raised a number of critical issues that has left science without adequate data since 1989.Investigations planned for Mars Express will cast new light on important aspects of the solar wind interaction with Mars. ASPERA-3 (Analyzer of Space Plasma and Energetic Atoms) on Mars Express will focus on the overall plasma outflow and monitor remotely the outflow and inflow of energetic neutral atoms produced by charge exchange processes. This report will discuss some of the unsolved issues about the solar wind interaction with Mars and how we plan to address these issues with Mars Express.  相似文献   

7.
The oxidation state of the Earth's surface is one of the most obvious indications of the effect of life on this planet. The surface of Mars is highly oxidized, as evidenced by its red color, but the connection to life is less apparent. Two possibilities can be considered. First, the oxidant may be photochemically produced in the atmosphere. In this case the fundamental source of O2 is the loss of H2 to space and the oxidant produced is H2O2. This oxidant would accumulate on the surface and thereby destroy any organic material and other reductants to some depth. Recent models suggest that diffusion limits this depth to a few meters. An alternative source of oxygen is biological oxygen production followed by sequestration of organic material in sediments--as on the Earth. In this case, the net oxidation of the surface was determined billions of years ago when Mars was a more habitable planet and oxidative conditions could persist to great depths, over 100 m. Below this must be a compensating layer of biogenic organic material. Insight into the nature of past sources of oxidation on Mars will require searching for organics in the Martian subsurface and sediments.  相似文献   

8.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

9.
Mars     
Mars is the fourth planet out from the sun. It is a terrestrial planet with a density suggesting a composition roughly similar to that of the Earth. Its orbital period is 687 days, its orbital eccentricity is 0.093 and its rotational period is about 24 hours. Mars has two small moons of asteroidal shapes and sizes (about 11 and 6 km mean radius), the bigger of which, Phobos, orbits with decreasing semimajor orbit axis. The decrease of the orbit is caused by the dissipation of tidal energy in the Martian mantle. The other satellite, Deimos, orbits close to the synchronous position where the rotation period of a planet equals the orbital period of its satellite and has hardly evolved with time. Mars has a tenous atmosphere composed mostly of CO with strong winds and with large scale aeolian transport of surface material during dust storms and in sublimation-condensation cycles between the polar caps. The planet has a small magnetic field, probably not generated by dynamo action in the core but possibly due to remnant magnetization of crustal rock acquired earlier from a stronger magnetic field generated by a now dead core dynamo. A dynamo powered by thermal power alone would have ceased a few billions of years ago as the core cooled to an extent that it became stably stratified. Mars' topography and its gravity field are dominated by the Tharsis bulge, a huge dome of volcanic origin. Tharsis was the major center of volcanic activity, a second center is Elysium about 100° in longitude away. The Tharsis bulge is a major contributor to the non-hydrostaticity of the planet's figure. The moment of inertia factor together with the mass and the radius presently is the most useful constraint for geophysical models of the Martian interior. It has recently been determined by Doppler range measurements to the Mars Pathfinder Lander to be (Folkner et al. 1997). In addition, models of the interior structure use the chemistry of the SNC meteorites which are widely believed to have originated on Mars. According to the models, Mars is a differentiated planet with a 100 to 200 km thick basaltic crust, a metallic core with a radius of approximately half the planetary radius, and a silicate mantle. Mantle dynamics is essential in forming the elements of the surface tectonics. Models of mantle convection find that the pressure-induced phase transformations of -olivine to -spinel, -spinel to -spinel, and -spinel to perovskite play major roles in the evolution of mantle flow fields and mantle temperature. It is not very likely that the -spinel to perovskite transition is present in Mars today, but a few 100 km thick layer of perovskite may have been present in the lower mantle immediately above the core-mantle boundary early in the Martian history when mantle temperatures were hotter than today. The phase transitions act to reduce the number of upwellings to a few major plumes which is consistent with the bipolar distribution of volcanic centers of Mars. The phase transitions also cause a partial layering of the lower mantle which keeps the lower mantle and the core from extensive cooling over the past aeons. A relatively hot, fluid core is the most widely accepted explanation for the present lack of a self-generated magnetic field. Growth of an inner core which requires sub-liquidus temperatures in the core would have provided an efficient mechanism to power a dynamo up to the present day. Received 10 May 1997  相似文献   

10.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

11.
Lithospheric strength can be used to estimate the heat flow at the time when a given region was deformed, allowing us to constrain the thermal evolution of a planetary body. In this sense, the high (>300 km) effective elastic thickness of the lithosphere deduced from the very limited deflection caused by the north polar cap of Mars indicates a low surface heat flow for this region at the present time, a finding difficult to reconcile with thermal history models. This has started a debate on the current heat flow of Mars and the implications for the thermal evolution of the planet. Here we perform refined estimates of paleo-heat flow for 22 martian regions of different periods and geological context, derived from the effective elastic thickness of the lithosphere or from faulting depth beneath large thrust faults, by considering regional radioactive element abundances and realistic thermal conductivities for the crust and mantle lithosphere. For the calculations based on the effective elastic thickness of the lithosphere we also consider the respective contributions of crust and mantle lithosphere to the total lithospheric strength. The obtained surface heat flows are in general lower than the equivalent radioactive heat production of Mars at the corresponding times, suggesting a limited contribution from secular cooling to the heat flow during the majority of the history of Mars. This is contrary to the predictions from the majority of thermal history models, but is consistent with evidence suggesting a currently fluid core, limited secular contraction for Mars, and recent extensive volcanism. Moreover, the interior of Mars could even have been heating up during part of the thermal history of the planet.  相似文献   

12.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

13.
14.
15.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

16.
A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station accommodates devices for atmospheric measurements, geophysical and geochemical studies of the Martian surface and interior, and cameras for descent phase and panoramic views. These instruments would be able to contribute remarkably to the process of solving some of the scientific puzzles of Mars.  相似文献   

17.
A discussion is presented about the constraints used in constructing a model for the internal structure of Mars. The most important fact is that the Martian chemical model proposed by Wänke and Dreibus (WD) has stood the test of time. This means that the chondritic ratio Fe/Si = 1.71 can be used as a constraint in constructing an interior structure model of the planet. Consideration is given to the constructing of the reference surface of Mars. It is concluded that the effectively hydrostatic-equilibrium model of Mars is well suited for this purpose. The areoid heights and gravity anomalies in the model of Mars are calculated. The results are shown in the figures (maps) and comments made. The results are compared with the similar data for the Earth. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth’s continental lithosphere.  相似文献   

18.
The seasonal evolution of the H2O snow in the Martian polar caps and the dynamics of water vapor in the Martian atmosphere are studied. It is concluded that the variations of the H2O mass in the polar caps of Mars are determined by the soil thermal regime in the polar regions of the planet. The atmosphere affects water condensation and evaporation in the polar caps mainly by transferring water between the polar caps. The stability of the system implies the presence of a source of water vapor that compensates for the removal of water from the atmosphere due to permanent vapor condensation in the polar residual caps. The evaporation of the water ice that is present in the surface soil layers in the polar regions of the planet is considered as such a source. The annual growth of the water-ice mass in the residual polar caps is estimated. The latitudinal pattern of the seasonal distribution of water vapor in the atmosphere is obtained for the stable regime.Translated from Astronomicheskii Vestnik, Vol. 38, No. 6, 2004, pp. 497–503.Original Russian Text Copyright © 2004 by Aleshin.  相似文献   

19.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

20.
The atmospheric erosion induced by impacts of cosmic bodies with sizes from ~100 m to 10 km is calculated for the Earth with its present atmosphere and for Mars with a dense carbon dioxide atmosphere that could be at the early stages of planetary evolution. Numerical results are compared to simple analytic models and calculations performed by other authors; approximate formulas are suggested. The evolutions of early atmospheres, which could exist at the late stage of the planetary accumulation, are numerically simulated using an integral model of impact-induced atmospheric erosion and replenishment in the approximation of a one-component atmosphere with a composition determined by the basic atmosphile component of the bodies falling onto the planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号