首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea surface wind stress and drag coefficients: The hexos results   总被引:17,自引:1,他引:17  
Turbulent fluxes have been measured in the atmospheric surface layer from a boom extending upwind from the Dutch offshore research platform Meetpost Noordwijk (MPN) during HEXMAX (Humidity Exchange over the Sea Main Experiment) in October–November, 1986. We started out to study eddy flux of water vapour, but discrepancies among simultaneous measurements made with three different anemometers led us to develop methods to correct eddy correlation measurements of wind stress for flow distortion by nearby objects. We then found excellent agreement among the corrected wind stress data sets from the three anemometers on the MPN boom and with eddy correlation measurements from a mast on a tripod. Inertial-dissipation techniques gave reliable estimates of wind stress from turbulence spectra, both at MPN and at a nearby ship. The data cover a range of wave ages and the results yield new insights into the variation of sea surface wind stress with sea state; two alternative formulas are given for the nondimensional surface roughness as a function of wave age.  相似文献   

2.
An earlier discussion of the wind stress measurements of the 1986 HEXMAX experiment off the Dutch coast left some uncertainty about the actual relationship between the stress and the wave field. In this paper we try to find a more definitive answer by looking at the consequences for gradients of wind speed, stress and phase speed of the waves if we assume the Charnock coefficient to be either a constant or to have an inverse wave age dependence. It turns out that both assumptions have a wind speed range where they produce coherent results, but that they break down when the wave length exceeds a value that is related to the water depth.  相似文献   

3.
In this study we search for the optimal wave parameters characterizing the effect of waves on the air–sea momentum flux. When an attempt using traditional statistics failed to give an unequivocal answer, we applied a neural network approach. This led to a clear choice for the optimal parameters viz. the wind speed at a level equal to the wave height and the wavelength at the peak of the spectrum. With this set we could find a dimensionally correct parameterization that gave a close fit to our stress data, obtained in the southern North Sea. A comparison with open ocean data gave comparable results, allowing a generally applicable formulation. Wave breaking could explain the remaining small differences between the two sets of stress data.  相似文献   

4.
Hurricane intensity and track are strongly affected by air-sea interactions. Classified as following swells, crossing swells, and opposing swells, the observed wave height was parameterized by using the 10-m wind speed collected on 5 buoys by the National Buoy Data Center during 13 hurricane events. The path information of these 13 hurricanes was obtained from the National Hurricane Center Best Track (NHC-BT). Results show that the wave height increases exponentially with the 10-m wind speed, and the wave height reaches the maximum value, 11.2 m (8.1 m), when 10-m wind speed is 40 m s-1 under the following and crossing (opposing) swell conditions. We find that the wave steepness (the ratio of wave height to wave length) is proportional to the -2/3 power of the wave age (the ratio of wave phase velocity to 10-m wind speed). The parameterizations of friction velocity and drag coefficient are tested using the buoy data collected in moderate to high wind under following, crossing and opposing swell conditions. A wave age dependent equation for drag coefficient is found more accurate and suggested for future usage in numerical models. Further, these algorithms also suggest that wind-swell orientation needs to be considered to retrieve accurate surface drag under high winds and strong swells.  相似文献   

5.
Laboratory Studies Of Wind Stress Over Surface Waves   总被引:4,自引:0,他引:4  
Simultaneous laboratory observations of wind speed, wind stress, and surfacewind-wave spectra are made under a variety of wind forcing patterns using cleanwater as well as water containing an artificial surfactant. Under typical experimentalconditions, more than half of the total stress is supported by the wave-induced stressrather than by the surface viscous stress. When the surfactant reduces the shortwind-wave spectra, the wind stress also decreases by as much as 20–30% at agiven wind speed. When the wind forcing is modulated in time, the wind stresstends to be higher under decreasing wind than under increasing wind at a givenwind speed, mainly because the response of short wind-wave spectra to varyingwind forcing is delayed in time. These examples clearly demonstrate that therelationship between the wind speed and the wind stress can be significantlymodified if the surface wave field is not in equilibrium with the wind forcing.Next, we examine whether the wind stress is estimated accurately if the wave-inducedstress by all surface wave components is explicitly evaluated by linear superpositionand is added to the surface viscous stress. It is assumed that the surface viscous stressis uniquely related to the wind speed, and that the wind input rate is determined by thelocal, reduced turbulent stress rather than the total stress. Our wind stress estimatesincluding the wave contributions agree well with observed wind stress values, evenif the surface wave field is away from its equilibrium with the wind in the presenceof surface films and/or under time-transient wind forcing. These observations stronglysuggest that the wind stress is accurately evaluated as a sum of the wave-induced stressand the surface viscous stress. At very high winds, our stress estimates tend to be lowerthan the observations. We suspect that this is because of the enhancement of wind stressover very steep (or breaking) short wind-waves.  相似文献   

6.
Abstract

Monthly mean sea‐level pressure (SLP) data from the Northern Hemisphere for the period January 1952‐December 1987 are analysed. Fluctuations in this field over the Arctic on interannual time‐scales and their statistical association with fluctuations farther south are determined. The standard deviation of the interannual variability is largest compared with that of the annual cycle along the seaboards of the major land masses. The SLP anomalies are generally in phase over the entire Arctic Basin and extend south over the northern Russia and Canada, but tend to be out of phase with fluctuations at mid‐latitudes. The anomalies are most closely associated with fluctuations over the North Atlantic and Europe except near the Chukchi Sea to the north of Bering Strait. The associations with the North Pacific fluctuations become increasingly more prominent at most Arctic sites (e.g. the Canadian Arctic Archipelago) as the time‐scale increases.

Associations between the SLP fluctuations and atmospheric indices that represent processes affecting sea‐ice drift (wind stress and wind stress curl) are determined. In every case local associations dominate, but some remote ones are also evident. For example, changes in the magnitude of the wind stress curl over the Beaufort Sea are increased if the atmospheric circulation over the North Pacific is intensified; wind stress over the region where sea ice is exchanged between the Beaufort Gyre and the Transpolar Drift Stream is modulated by both the Southern and North Atlantic Oscillations.

Severe sea‐ice conditions in the Greenland Sea (as measured by the Koch Ice Index) coincide with a weakened atmospheric circulation over the North Atlantic.  相似文献   

7.
探讨南海北部海域风浪成长时有效波高与风速、风时、风区之间的关系,同时分析了5种风浪要素的推算方法,探讨其在南海北部海域的适用性。结果表明:1)在南海北部,风速和风时呈现线性增长的关系,风速越大,风浪从过度状态成长到充分成长状态所需风时就越长;风速大小和风区长度之间满足平方关系,风速越大,风浪充分成长所需风区长度就越长。2)在南海北部,有效波高的大小与风速的大小、风时的长短、风区的长度3者密切相关。3)SMB方法、W ilson IV方法和青岛方法,在计算南海北部的风浪关系中体现出了一定的稳定性和适应性。  相似文献   

8.
根据FY-2G卫星遥感监测资料、常规气象观测资料和NCEP逐6h1°×1°再分析资料,分析2014年12月31日至2015年1月1日渤海大风过程中风速的3次波动特征以及影响系统,并对大风期间物理量进行了诊断分析,揭示了冷空气影响过程中渤海大风的突增以及波动性成因。结果表明:当冷空气影响渤海时,冷暖空气对比使低空锋区迅速加强,风力突增明显。大风期间高层深厚的冷平流自上而下形成了一条西北东南向后倾式的冷平流传输通道,平流分3次传送到底层对应着大风期间的3次波动峰值。整个过程动量下传起了重要的作用,下沉气流的径向度越大,高层下沉运动越强,对应地面的风速越大。  相似文献   

9.
The North Sea 10-m wind speed (WS10) climate is compared and related to circulation patterns based on the sea level pressure (SLP) extracted from three reanalysis and one high-resolution model dataset. The mean magnitude and the trends of WS10 depend considerably on the selected reanalysis. The variability of WS10 among the three reanalysis datasets is highly correlated in the recent period (1980–2000) but less so in the past period (1960–1980). The WS10 over the North Sea is well represented by the relatively low reanalysis resolution when compared to the high-resolution WS10 model data partially owing to the high spatial correlation of WS10. Exceptions are observed only at the coastal areas. The dominant mode of WS10 explains coherent variability of WS10 over the North Sea and is related to a SLP pattern similar to the North Atlantic oscillation (NAO). The increase of the magnitude of the dominant WS10 pattern is related to the increase of the magnitude of the NAO-like SLP pattern from 1960s to mid-1990s. The second dominant WS10 pattern—a dipole in WS10 to the north and south of Great Britain—is related to the differences in SLP between Scandinavia and Iceland. The relation between the second WS10 and SLP patterns is more prominent in the recent period. The extreme WS10 in the German Bight is related to the low SLP over Scandinavia. The extreme WS10 is strongly increasing from the early 1980s to the beginning of 1990s, which is not observed in the corresponding SLP time series over Scandinavia.  相似文献   

10.
Measurements from the Baltic Sea and a wind-over-wave coupled model are used to study the wave impact on the sea drag. The study has been carried out for different wave conditions, namely a pure wind-sea, following-swell/ mixed sea and cross-swell/ mixed sea. Measurements reveal the fact that the sea drag is dependent on the sea-state. In stationary conditions and in the absence of severe cross-swell, swell reduces drag compared to wind-sea at the same wind speed. The cross-swell enhances the drag as compared to the following-swell case and the magnitude of the drag coefficient is increased with increasing the angle of swell propagation to the wind. It is shown that the agreement between the model results and measurements is good for pure wind-sea and stationary mixed-sea cases. Discrepancies occur at light winds, where most of the data represent pure swell conditions. During these pure swell conditions the data are characterized by a large variation of the drag coefficient. The variation is caused by mesoscale variability in the stress co-spectra, wind-cross-swell effects and nonstationarity in the wave and wind fields not represented in the model.  相似文献   

11.
基于1993—2012年TOPEX/Poseidon(T/P)卫星海平面异常SLA(Sea Level Anomaly)数据和FSCR(Climate Forecast System Reanalysis)再分析风场资料,分析黄东海域近20 a海平面的时空分布特征,尤其是不同时间尺度风场影响的变化特征,进而通过区域海洋模式对海面高度短期变化的可能机制进行探讨。结果表明:1)黄东海域海平面多年平均状态为南高北低,近海面季节性风场在岸线分布和海水热膨胀特征下,造成海面冬春季偏低,夏秋季偏高。近20 a黄东海域平均风速逐步减弱,平均海面上升速率为2.9 mm/a。2)风场的短期活动主要为灾害性大风,统计显示冬夏寒潮大风和台风大风均呈频数减少、强度增强的趋势。运用FVCOM(Finite Volume Community Ocean Model)模拟分析台风和寒潮作用下黄东海域海平面的变化,发现台风强风可形成辐散式海流气旋式涡旋,对应海面为下凹负值中心;北路寒潮大风可形成海流反气旋式涡旋,对应海面为上凸正值中心。两类涡旋的强海流部分增强了海面倾斜度。3)强海流部分动能和动量迅速向海水深部下传,无论在深度和强度上,寒潮造成的海流涡旋动能和动量下传比台风涡旋更迅速,更强。这与寒潮降温引起的海洋层结不稳定对流作用有关。  相似文献   

12.
Independent datasets consistently indicate a significant correlation between the sea ice variability in the Bering Sea during melt season and the summer rainfall variability in the Lake Baikal area and Northeastern China. In this study, four sea ice datasets(Had ISST1, Had ISST2.2, ERA-Interim and NOAA/NSIDC) and two global precipitation datasets(CRU V4.01 and GPCP V2.3) are used to investigate co-variations between melt season(March-April-May-June, MAMJ)Bering Sea ice cover(BSIC) and summer(June-July-August, JJA) East Asian precipitation. All datasets demonstrate a significant correlation between the MAMJ BSIC and the JJA rainfall in Lake Baikal-Northeastern China(Baikal-NEC).Based on the reanalysis datasets and the numerical sensitivity experiments performed in this study using Community Atmospheric Model version 5(CAM5), a mechanism to understand how the MAMJ BSIC influences the JJA Baikal-NEC rainfall is suggested. More MAMJ BSIC triggers a wave train and causes a positive sea level pressure(SLP) anomaly over the North Atlantic during MAMJ. The high SLP anomaly, associated with an anti-cyclonic wind stress circulation anomaly,favors the appearance of sea surface temperature(SST) anomalies in a zonal dipole-pattern in the North Atlantic during summer. The dipole SST anomaly drives a zonally orientated wave train, which causes a high anomaly geopotential height at 500 h Pa over the Sea of Japan. As a result, the mean East Asian trough moves westward and a low geopotential height anomaly occurs over Baikal-NEC. This prevailing regional low pressure anomaly together with enhanced moisture transport from the western North Pacific and convergence over Baikal-NEC, positively influences the increased rainfall in summer.  相似文献   

13.
采用1958年1月—2001年12月ECMWF ERA-40的10m风场资料,以及由该风场资料驱动WAVEWATCHⅢ得到的北印度洋—南海海域44a的海浪场资料,通过EOF分析、正交小波分析和M-K检测方法,分析了北印度洋—南海海域海面风场和有效波高的年代际变化特征。结果表明:北印度洋—南海海域存在3个大风、大浪区,其中亚丁湾以东洋面风力最强,有效波高最高;表面风场和有效波高存在35、15和3a的主周期变化,并自20世纪70年代中期以来,年平均风场和有效波高均存在明显增强趋势,1977年为突变起始年;年平均海表10m风速和有效波高随时间增大主要是由冬季和春季海表10m风速和有效波高随时间增大引起的;冬、秋季海面风场与有效波高的年际、年代际变化周期较一致,冬季以35~40a的周期为主,秋季以11~12a的周期为主。  相似文献   

14.
Drag of the sea surface   总被引:6,自引:1,他引:6  
It is shown how the drag of the sea surface can be computed from the wind speed and the sea state. The approach, applicable both for fully developed and for developing seas, is based on conservation of momentum in the boundary layer above the sea, which allows one to relate the drag to the properties of the momentum exchange between the sea waves and the atmosphere.The total stress is split into two parts: a turbulent part and a wave-induced part. The former is parameterized in terms of mixing-length theory. The latter is calculated by integration of the wave-induced stress over all wave numbers. Usually, the effective roughness is given in terms of the empirical Charnock relation. Here, it is shown how this relation can be derived from the dynamical balance between turbulent and wave-induced stress. To this end, the non-slip boundary conditions is assigned to the wave surface, and the local roughness parameter is determined by the scale of the molecular sublayer.The formation of the sea drag is then described for fully developed and developing seas and for light to high winds.For the Charnock constant, a value of about 0.018–0.030 is obtained, depending on the wind input, which is well within the range of experimental data.It is shown that gravity-capillary waves with a wavelength less than 5 cm play a minor role in the momentum transfer from wind to waves. Most of the momentum is transferred to decimeter and meter waves, so that the drag of developing seas depends crucially on the form of the wave spectrum in the corresponding high wavenumber range.The dependence of the drag on wave age depends sensitively on the dependence of this high wavenumbertail on wave age. If the tail is wave-age independent, the sea drag appears to be virtually independent of wave age. If the tail depends on wave age, the drag also does. There is contradictory evidence as to the actual dependence. Therefore, additional experiments are needed.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

15.
Abstract

With the object of providing an accurate set of open‐sea wave spectra in a variety of conditions, we deployed, in conjunction with CASP, an array of 9 wave buoys (3 directional, 6 non‐directional) along a 30‐km line offshore from Martinique Beach, N.S. A large set of high‐quality wave spectra was collected in conjunction with extensive meteorological information. The data set is unique in the sense that a large onshore swell component was normally present.

Offshore‐wind cases for three windows: ±5°, ±15° and ±30° with respect to the shore normal, have been considered. Wind speed was found to be a strong function of fetch, and attempts were made to allow for this in the analysis. Power‐law regressions have been produced of dimensionless sea energy, peak frequency and high‐frequency spectral level (the Kitaigorodskii “alpha” parameter) vs dimensionless fetch and wind speed (inverse wave age). The regressions are compared with earlier work: the Joint North Sea Waves Project (Jonswap) and the Canada Centre for Inland Waters (CCIW) Lake Ontario study.

The comparisons indicate that dimensionless wave energies, peak frequencies and alpha values in this experiment are comparable with those from earlier experiments; in spite of different wind analysis methods, the CASP and CCIW fetch‐limited growth laws are consistent within the contexts of the two experiments. Differences among the estimated parameters are as large within the analyses of the three windows as they are among the three experiments we compare.  相似文献   

16.
为了研究风场对背风波的影响,针对边界层附近为弱稳定层结的背风波,建立了一个三维三层的理论模型和线性计算模式,分析了各层中风速和风向的变化对背风波特征的影响,揭示了气流过孤立山脉产生背风波的有利风场条件。结果表明:背风波的波长、振幅等特征对各层风速和风向的变化具有相当的敏感性,波长随着低、高层风速的增大而增大,随着中层风速的增大先减小后增大;振幅随着低、中层风速的增大先增大后减小,随着高层风速的增大而增大。此外,风速和上下层风向切变的增大均使背风波的形态逐渐由横波型转为辐散型,但是上下层风向的切变对背风波形态的影响比风速更为显著。  相似文献   

17.
基于WAVEWATCH-Ⅲ模式的近10年南海波候统计分析   总被引:1,自引:1,他引:0  
基于国际上较为先进的第三代海浪数值模式WAVEWATCH-Ⅲ,以QuikSCAT/NCEP混合风场为驱动场,得到南海1999年8月-2009年7月的海浪场,并据此对近10 a南海的波候特征进行分析.结果表明:(1)南海受季风影响显著,风场和浪场的对应关系在季风盛行季节明显好于季风过渡季节.(2)南海南部海域的浪场对海表...  相似文献   

18.
Fetch Limited Drag Coefficients   总被引:5,自引:1,他引:5  
Measurements made at a tower located 2 km off the coast of Denmark inshallow water during the Risø Air Sea Experiment (RASEX) are analyzedto investigate the behaviour of the drag coefficient in the coastal zone.For a given wind speed, the drag coefficient is larger during conditions ofshort fetch (2-5 km) off-shore flow with younger growing waves than it isfor longer fetch (15-25 km) on-shore flow. For the strongest on-shorewinds, wave breaking enhances the drag coefficient. Variation of the neutral drag coefficient in RASEX is dominated byvariation of wave age, frequency bandwidth of the wave spectra and windspeed. The frequency bandwidth is proportional to the broadness of the waveheight spectra and is largest during conditions of light wind speeds. Usingthe RASEX data, simple models of the drag coefficient and roughness length are developed in terms of wind speed, wave age and bandwidth. An off-shoreflow model of the drag coefficient in terms of nondimensional fetch isdeveloped for situations when the wave state is not known.  相似文献   

19.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   

20.
利用1979—2016年ERA-Interim有效波高(SWH)和海表风场数据,分析了南海-北印度洋极端海浪场分布和变化.结果表明:南海-北印度洋极端SWH分布和极端风速分布形态以及年际变化趋势高度一致,说明了涌浪为主的北印度洋和风浪为主的南海一样,极端SWH都由局地的极端风速控制;强极端SWH主要分布在阿拉伯海以及南海北部,阿拉伯海北部增长与该区域气旋强度增强有着密切关系,而南海的极端SWH主要受东北季风控制;东非沿岸极端SWH线性增长趋势则与索马里急流的年代际尺度上有逐渐增强的线性趋势有关.北印度洋及南海海域极端SWH距平场的EOF分析结果表明,南海极端SWH与北印度洋表现出反相变化的特征.北印度洋(南海海域)极端SWH多出现在西南季风(东北季风)期间,因为在西南季风(东北季风)期间,极端风速也相对增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号