首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Over recent years, many numerical studies have suggested that the land surface hydrology contributes to atmospheric variability and predictability on a wide range of scales. Conversely, land surface models (LSMs) have been also used to study the hydrological impacts of seasonal climate anomalies and of global warming. Validating these models at the global scale is therefore a crucial task, which requires off-line simulations driven by realistic atmospheric fluxes to avoid the systematic biases commonly found in the atmospheric models. The present study is aimed at validating a new land surface hydrology within the ISBA LSM. Global simulations are conducted at a 1° by 1° horizontal resolution using 3-hourly atmospheric forcings provided by the Global Soil Wetness Project. Compared to the original scheme, the new hydrology includes a comprehensive and consistent set of sub-grid parametrizations in order to account for spatial heterogeneities of topography, vegetation, and precipitation within each grid cell. The simulated runoff is converted into river discharge using the total runoff integrating pathways (TRIP) river routing model (RRM), and compared with available monthly observations at 80 gauging stations distributed over the world’s largest river basins. The simulated discharges are also compared with parallel global simulations from five alternative LSMs. Globally, the new sub-grid hydrology performs better than the original ISBA scheme. Nevertheless, the improvement is not so clear in the high-latitude river basins (i.e. Ob, MacKenzie), which can be explained by a too late snow melt in the ISBA model. Over specific basins (i.e. Parana, Niger), the quality of the simulated discharge is also limited by the TRIP RRM, which does not account for the occurrence of seasonal floodplains and for their significant impact on the basin-scale water budget.  相似文献   

2.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

3.
Abstract

Present‐day results and CO2 sensitivity are described for two versions of a global climate model (genesis) with and without sea‐ice dynamics. Sea‐ice dynamics is modelled using the cavitating‐fluid method of Flato and Hibler (1990, 1992). The atmospheric general circulation model originated from the NCAR Community Climate Model version 1, but is heavily modified to include new treatments of clouds, penetrative convection, planetary boundary‐layer mixing, solar radiation, the diurnal cycle and the semi‐Lagrangian transport of water vapour. The surface models include an explicit model of vegetation (similar to BATS and SiB), multilayer models of soil, snow and sea ice, and a slab ocean mixed layer.

When sea‐ice dynamics is turned off, the CO2‐induced warming increases drastically around ~60–80°S in winter and spring. This is due to the much greater (and unrealistic) compactness of the Antarctic ice cover without dynamics, which is reduced considerably when CO2 is doubled and exposes more open ocean to the atmosphere. With dynamics, the winter ice is already quite dispersed for 1 × CO2 so that its compactness does not decrease as much when CO2 is doubled.  相似文献   

4.
不同分辨率CCSM4对东亚和中国气候模拟能力分析   总被引:9,自引:4,他引:5  
田芝平  姜大膀 《大气科学》2013,37(1):171-186
本文利用通用气候系统模式CCSM4在三种水平分辨率下的工业化革命前期气候模拟试验,结合观测和再分析资料,比较了各分辨率下模式对中国温度和降水、东亚海平面气压和850 hPa风场的模拟能力,综合评价了模式分辨率对东亚和中国气候模拟的影响.结果表明,三种分辨率对中国温度均具有很好的模拟能力,除春季外,低分辨率(T31,约3.75°×3.75°)对全年温度的模拟能力均要稍好于中(f19,约1.9°×2.5°)、高(f09,约0.9°×1.25°)分辨率;各分辨率对中国降水的模拟能力远不如温度,除冬季外全年都出现的中部地区虚假降水并未因为模式分辨率提高而得到本质改善;对于东亚海平面气压场,低分辨率在冬季模拟能力相对最好,中等分辨率在夏季相对较好,而高分辨率的模拟能力均表现最差;低分辨率对850 hPa东亚冬季风和夏季风的模拟能力均要好于中、高分辨率,而两种较高分辨率的模拟能力则比较接近.总的来说,低分辨率CCSM4在东亚和中国气候模拟中表现出了较大优势,加之其计算代价小,适合进行需要较长时间积分的气候模拟研究.  相似文献   

5.
较全面地介绍了北京气候中心气候系统模式(BCC_CSM)研发所取得的一些进展及其在气候变化研究中的应用,重点介绍了全球近280 km较低分辨率的全球海-陆-气-冰-生物多圈层耦合的气候系统模式BCC_CSM1.1和110 km中等大气分辨率的BCC_CSM1.1(m),以及大气、陆面、海洋、海冰各分量模式的发展。BCC_CSM1.1和BCC_CSM1.1(m)气候系统模式均包含了全球碳循环和动态植被过程。当给定全球人类活动导致的碳源排放后,就可以模拟和预估人类活动对气候变化的影响。BCC_CSM1.1和BCC_CSM1.1(m)已应用于IPCC AR5模式比较,为中外开展气候变化机理分析和未来气候变化预估提供了大量的试验数据。还介绍了BCC_CSM1.1和BCC_CSM1.1(m)参与国际耦合模式比较计划(CMIP5)的大量试验分析评估结果,BCC_CSM能够较好地模拟20世纪气温和降水等气候平均态和季节变化特征,以及近1000年的历史气候变化,所预估的未来100年气候变化与国际上其他模式的CMIP5试验预估结果相当。初步的分析表明,分辨率相对高的BCC_CSM1.1(m)在区域气候平均态的模拟上优于分辨率较低的BCC_CSM1.1。  相似文献   

6.
A temperate and boreal deforestation experiment has been performed at Météo-France using the ARPEGE climate model. A first simulation was performed as a control with a present-day vegetation map, and another one with all forests north of 45 °N replaced by meadows. Prescribed monthly mean climatological SSTs were used in both integrations. The ARPEGE climate model includes a physically based land surface scheme, which has been tested both on snowfree and snow-covered sites, and has a relatively high horizontal resolution. Results of the 4-year integrations suggest that forests exert a strong influence on the surface climate of the temperate and boreal regions. Deforestation induces a significant cooling which modifies the atmospheric circulation simulated in the high latitudes, and also in the tropics. The most important impact is observed during the melting season which is delayed by the forest removal. This result is consistent with preliminary stand-alone experiments showing that the atmospheric boundary layer can be heated by the forest, even if the ground is covered by snow. The study confirms that vegetation feedbacks should be included when performing future climate studies such as doubled CO2 experiments, eventhough many uncertainties still remain with regard to other physical aspects of the climate models. Received: 5 September 1995 / Accepted: 12 August 1996  相似文献   

7.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

8.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

9.
By 2025, it is estimated that around 5 billion people, out of a total population of around 8 billion, will be living in countries experiencing water stress (using more than 20% of their available resources). Climate change has the potential to impose additional pressures in some regions. This paper describes an assessment of the implications of climate change for global hydrological regimes and water resources. It uses climate change scenarios developed from Hadley Centre climate simulations (HadCM2 and HadCM3), and simulates global river flows at a spatial resolution of 0.5×0.5° using a macro-scale hydrological model. Changes in national water resources are calculated, including both internally generated runoff and upstream imports, and compared with national water use estimates developed for the United Nations Comprehensive Assessment of the Freshwater Resources of the World. Although there is variation between scenarios, the results suggest that average annual runoff will increase in high latitudes, in equatorial Africa and Asia, and southeast Asia, and will decrease in mid-latitudes and most subtropical regions. The HadCM3 scenario produces changes in runoff which are often similar to those from the HadCM2 scenarios — but there are important regional differences. The rise in temperature associated with climate change leads to a general reduction in the proportion of precipitation falling as snow, and a consequent reduction in many areas in the duration of snow cover. This has implications for the timing of streamflow in such regions, with a shift from spring snow melt to winter runoff. Under the HadCM2 ensemble mean scenario, the number of people living in countries with water stress would increase by 53 million by 2025 (relative to those who would be affected in the absence of climate change). Under the HadCM3 scenario, the number of people living in countries with water stress would rise by 113 million. However, by 2050 there would be a net reduction in populations in stressed countries under HadCM2 (of around 69 million), but an increase of 56 million under HadCM3. The study also showed that different indications of the impact of climate change on water resource stresses could be obtained using different projections of future water use. The paper emphasises the large range between estimates of “impact”, and also discusses the problems associated with the scale of analysis and the definition of indices of water resource impact.  相似文献   

10.
Results from a suite of 30-year simulations (after spin-up) of the fully coupled Community Climate System Model version 2.0.1 are analyzed to examine the impact of doubling CO2 on interactions between the global water cycle and the regional water cycles of four similar-size, but hydrologically and thermally different study regions (the Yukon, Ob, St Lawrence, and Colorado river basins and their adjacent land). A heuristic evaluation based on published climatological data shows that the model generally produces acceptable results for the control 1× CO2 concentration, except for mountainous regions where it performs like other modern climate models. After doubling CO2, the Northern Hemisphere receives significantly (95% confidence level) more moisture from the Southern Hemisphere during the boreal summer than under 1× CO2 conditions, and the phase of the annual cycle of net moisture transport to areas north of 60°N shifts to a month later than in the reference simulation. Precipitation and evapotranspiration in the doubled CO2 simulation increase for the Yukon, Ob, and St Lawrence, but decrease, on average, for the Colorado region compared to the reference simulation. For all regions, interaction between global and regional water cycles increases under doubled CO2, because the amount of moisture entering and leaving the regions increases in the warmer climate. The degree of change in this interaction depends on region and season, and is related to slight shifts in the position/strength of semi-permanent highs and lows for the Yukon, Ob, and St Lawrence; in the Colorado region, higher temperatures associated with doubling CO2 and the anticyclone located over the region increase the persistence of dry conditions.  相似文献   

11.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

12.
In atmospheric models, the partitioning of precipitation between infiltration and runoff has a major influence on the terrestrial water budget, and thereby on the simulated weather or climate. River routing models are now available to convert the simulated runoff into river discharge, offering a good opportunity to validate land surface models at the regional scale. However, given the low resolution of global atmospheric models, the quality of the hydrological simulations is much dependent on various processes occurring on unresolved spatial scales. This paper focuses on the parameterization of sub-grid hydrological processes within the ISBA land surface model. Five off-line simulations are performed over the French Rhône river basin, including various sets of parameterizations related to the sub-grid variability of topography, precipitation, maximum infiltration capacity and land surface properties. Parallel experiments are conducted at a high (8 km by 8 km) and low (1° by 1°) resolution, in order to test the robustness of the simulated water budget. Additional simulations are performed using the whole package of sub-grid parameterizations plus an exponential profile with depth of saturated hydraulic conductivity, in order to investigate the interaction between the vertical soil physics and the horizontal heterogeneities. All simulations are validated against a dense network of gauging measurements, after the simulated runoff is converted into discharge using the MODCOU river routing model. Generally speaking, the new version of ISBA, with both the sub-grid hydrology and the modified hydraulic conductivity, shows a better simulation of river discharge, as well as a weaker sensitivity to model resolution. The positive impact of each individual sub-grid parameterization on the simulated discharges is more obvious at the low resolution, whereas the high-resolution simulations are more sensitive to the exponential profile with depth of saturated hydraulic conductivity.  相似文献   

13.
The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from ?19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from ?1 to ?9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha?1 per 1% increase of the available soil water content on the sowing day.  相似文献   

14.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

15.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

16.
Summary The crop growth model CERES-Maize is used to estimate the direct (through enhanced fertilisation effect of ambient CO2) and indirect (through changed climate conditions) effects of increased concentration of atmospheric CO2 on maize yields. The analysis is based on multi-year crop model simulations run with daily weather series obtained alternatively by a direct modification of observed weather series and by a stochastic weather generator. The crop model is run in two settings: stressed yields are simulated in water and nutrient limited conditions, potential yields in water and nutrient unlimited conditions. The climate change scenario was constructed using the output from the ECHAM3/T42 model (temperature), regression relationships between temperature and solar radiation, and an expert judgement (precipitation). Results: (i) After omitting the two most extreme misfits, the standard error between the observed and modelled yields is 11%. (ii) The direct effect of doubled CO2: The stressed yields would increase by 36–41% in the present climate and by 61–66% in the 2 × CO2 climate. The potential yields would increase only by 9–10% as the improved water use efficiency does not apply. (iii) The indirect effect of doubled CO2: The stressed yields would decrease by 27–29% (14–16%) at present (doubled) ambient CO2 concentration. The increased temperature shortens the phenological phases and does not allow for the optimal development of the crop. The simultaneous decrease of precipitation and increase of temperature and solar radiation deepen the water stress, thereby reducing the yields. The reduction of the potential yields is significantly smaller as the effect of the increased water stress does not apply. (iv) If both direct and indirect effects of doubled CO2 are considered, the stressed yields should increase by 17–18%, and the potential yields by 5–14%. (v) The decrease of the stressed yields due to the indirect effect may be reduced by applying earlier planting dates. Received March 9, 2001 Revised September 25, 2001  相似文献   

17.
Abstract

As part of a study on the effects of climatic variability and change on the sustainability of agriculture in Alberto, the modelling performance of the second‐generation Canadian Climate Centre GCM (general circulation model) is examined. For the region in general, the simulation of 1 × CO2 mean temperature is generally better than that for mean precipitation, and summer is the season best modelled for each variable. At the scale of individual grid squares, DJF (December, January, February) (temperature) and JJA (June, July, August) (precipitation) are the seasons best modelled. The GCM‐simulated increases in mean annual temperature resulting from a doubling of CO2 are of the order of 5 to 6°C in the Prairie region, with much of this increase resulting from substantial warming in the winter and spring. Increases in mean annual precipitation are of the order of 50 to 150 mm (changes of +5 to +15%), with the greatest changes again occurring in winter and spring. As far as the limited GCM run durations allow, temperature and precipitation variance generally show no significant changes from a 1 × CO2 to a 2 × CO2 climate. Increased precipitation in winter and spring does not result in greater snow accumulations owing to the magnitude of warming; and significant decreases in soil moisture content occur in summer and fall. The resulting effects on the growing season and moisture regime have the potential to affect agricultural practices in the area.  相似文献   

18.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

19.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

20.
Abstract

The propagation of baroclinic Kelvin and Rossby waves in a fairly coarse‐resolution numerical reduced‐gravity ocean model is investigated using simple geostrophic adjustment experiments in a box‐like domain. Numerical experiments using three different horizontal resolutions (4° × 5°,2° × 2.5° and l° × 1.25°) with properly scaled eddy viscosity coefficients show that the phase speed of the model Kelvin waves is almost exactly proportional to the grid resolution, but is virtually independent of the model viscosity. These results are consistent with the findings of Hsieh et al. (1983) and Wajsowicz and Gill (1986). It is also shown that the two relevant parameters that govern the propagation and decay of these waves, namely the grid‐resolution parameter Δ = Δx/a (where Δx is the grid size and a is the baroclinic Rossby radius, viz. a = C/f, with C being the phase speed of inviscid internal gravity waves in a continuum) and the viscosity parameterΔ = Amλ/2πfa3 (where Am is the eddy viscosity coefficient and λ is the alongshore wavelength) can be replaced with Δ only. This is because in Munk (1950)‐type models, the viscosity parameter Δ scales with Δ3. For Δ3 >1, the Kelvin wave phase speed is cK ΔC/Δ and the alongshore decay length scale is of the order of the perimeter of the basin, viz., 0(104) km.

In contrast to the case for Kelvin waves, the phase speed of the model Rossby waves is not that much different from its value in a continuum and depends only weakly on the model resolution. This is in good agreement with the theoretical results of Wajsowicz (1986). On the other hand, the model Rossby waves are severely damped, within a distance of the order of a wavelength, by the large eddy viscosity of the model. We therefore extrapolate that for a proper simulanon of Kelvin and Rossby waves in this type of numerical ocean model, we need a grid size smaller than 1° × 1°, and a higher‐order turbulent closure scheme that will reduce the eddy viscosity coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号