首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

2.
The bulk properties and bitumen molecular compositions of a rank-series of 38 humic coals from the New Zealand Coal Band (Cretaceous–Cenozoic) have been analysed to investigate early maturation processes affecting coaly organic matter through diagenesis to moderate catagenesis (Rank(Sr) 0.0–11.8, Ro 0.23–0.81%). The samples comprise a relatively restricted range of vitrinite rich coal types formed largely from higher land plant material under relatively oxic conditions, but with a significant contribution from microbial biomass. With increasing rank, total organic carbon contents show a general increase, whereas moisture and asphaltene contents decrease. Bitumen yields also decrease through the stages of diagenesis and early catagenesis (Rank(Sr) < 9, Ro < 0.55%), indicating partial loss of initial bitumen during early maturation. Thermal generation of hydrocarbons begins slowly at Rank(Sr)  5–6 (Ro  0.40%) as indicated by the constant occurrence and gradual increase of isoprenoids (e.g., pristane and phytane) and hopanoids in their more mature αβ configuration. This early phase of catagenesis, not previously recognised in New Zealand coals, is followed at Rank(Sr)  9 (Ro  0.55%) by the main catagenesis phase characterised by a more rapid increase in the generation of hydrocarbons, including total n-alkanes, isoprenoids and αβ-hopanes. Changes in the maturity of New Zealand coals can be traced by the Carbon Preference Index and several hopane maturity parameters, including 22S/(22S + 22R), αβ/(αβ + βα) and ββ/(αβ + βα + ββ).  相似文献   

3.
From April to July 2002 we carried out a deployment of 6 ocean bottom seismometers and 4 ocean bottom hydrophones in the North Atlantic south of Iceland. During the deployment period we recorded clear Rayleigh waves from 2 regional and 14 teleseismic earthquakes. This corresponds to a Rayleigh wave detection rate of nearly 92% for events with MW ≥ 6.06.0 and epicentral distance less than 110°, close to detection rate estimates based on noise level variability. We measured Rayleigh wave event-station group dispersion and inter-station phase dispersion for one Mid-Atlantic Ridge event. The group dispersion curve is sensitive to the structure of the North-East Atlantic with an average age of  39 Myr. The phase dispersion curve is sensitive to the structure just south of Iceland (average plate age 33 Myr). Both dispersion curves indicate faster velocities than previously postulated for oceanic plate generated at the Reykjanes Ridge. A grid search approach was used to constrain the range of models fitting the data. The high velocity seismic lid just south of Iceland in the model for the phase dispersion path is slower or thinner than in the group dispersion model, which averages over a larger area and a somewhat older plate age, but the velocities in the low velocity half space are similar. We further consider the residual bathymetry in the experimental area. The residual anomaly decreases by 300–400 m from the Reykjanes Ridge to the  30 Myr old plate south of Iceland. This decrease can be explained by the disappearance of a mantle thermal anomaly associated with the Iceland plume. Both the residual bathymetry and the surface wave data are thus consistent with the notion that the southward spreading of the Icelandic plume is channelised underneath the Reykjanes Ridge and does not spread far outside this channel.Based on the experience from the pilot experiment, we estimate that a minimum recording time of 13–15 months in favourable weather conditions (April–September) is required to record enough data to map the spreading plume with surface waves, and to produce a tomographic image to a depth of 1000 km using body waves. This can be achieved by a continuous deployment of at least  20 months, or by two or three deployments during the spring and summer of consecutive years.  相似文献   

4.
J.D.A. Piper   《Tectonophysics》2007,432(1-4):133-157
The Southern Uplands terrane is an Ordovician–Silurian back-arc/foreland basin emplaced at the northern margin of the Iapetus Ocean and intruded by granite complexes including Loch Doon (408.3 ± 1.5 Ma) during Early Devonian times. Protracted cooling of this 130 km3 intrusion recorded magnetic remanence comprising a predominant (‘A’) magnetisation linked to initial cooling with dual polarity and mean direction D / I = 237 / 64° (α95 = 4°, palaeopole at 316°E, 21°N). Subsidiary magnetisations include Mesozoic remanence correlating with extensional tectonism in the adjoining Irish Sea Basin (‘B’, D / I = 234/− 59°) and minority populations (‘C’, D / I = 106/− 2° and ‘D’, D / I = 199/1°) recording emplacement of younger ( 395 Ma) granites in adjoining terranes and the Variscan orogenic event. The ‘A’ directions have an arcuate distribution identifying anticlockwise rotation during cooling. A comparable rotation is identified in the Orthotectonic Caledonides to the north and the Paratectonic Caledonides to the south following closure of Iapetus. Continental motion from midsoutherly latitudes ( 40°S) at 408 Ma to equatorial palaeolatitudes by  395 Ma is identified and implies minimum rates of continental movement between 430 and 390 Ma of 30–70 cm/year, more than double maximum rates induced by plate forces and interpreted as a signature of true polar wander. Silurian–Devonian palaeomagnetic data from the British–Scandinavian Caledonides define a 430–385 Ma closed loop comparable to the distributed contemporaneous palaeomagnetic poles from Gondwana. They reconcile pre-430 Ma and post-380 Ma APW from this supercontinent and show that Laurentia–Baltica–Avalonia lay to the west of South America with a relict Rheic Ocean opening to the north which closed to produce Variscan orogeny by a combination of pivotal closure and right lateral transpression.  相似文献   

5.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

6.
Dikes of the eastern Troodos ophiolite of Cyprus intruded at slow ocean-spreading axes with dips ranging up to 15° from vertical and with bimodal strikes (now NE–SW and N–S due to post-88 Ma sinistral microplate rotation). Varied dike orientations may represent local stress fields during dike-crack propagation but do not influence the spatial-distributions or orientation-distributions of dikes' magnetic fabrics, nor of their palaeomagnetic signals. Anisotropy of magnetic susceptibility (AMS) integrates mineral orientation-distributions from each of 1289 specimens sampled from dikes at 356 sites over 400 km2 in the eastern Troodos ophiolite of Cyprus. In 90% of dikes, AMS fabrics define a foliation (kMAXkINT) parallel to dike walls and a lineation (kMAX) that varies regionally and systematically. Magma-flow alignment of accessory magnetite controls the AMS with a subordinate contribution from the mafic silicate matrix that is reduced in anisotropy by sea-floor metamorphism. Titanomagnetite has less influence on anisotropy. Occasionally, intermediate and minimum susceptibility axes are switched so as to be incompatible with the kinematically reasonable flow plane but maximum susceptibility (kMAX) still defines the magmatic flow axis. Such blended subfabrics of kinematically compatible mafic-silicate and misaligned multidomain magnetite subfabrics; are rare. Areas of steep magma flow (kMAX plunge ≥ 70°) and of shallow magma-flow alternate in a systematic and gradual spatial pattern. Foci of steep flow were spaced 4 km parallel to the spreading axes and 6 km perpendicular to the spreading axes. Ridge-parallel separation of steep flow suggest the spacing of magma-feeders to the dikes whereas ridge-perpendicular spacing of 6 km at a spreading rate of 50 mm/a implies the magma sources may have been active for 240 Ka. The magma feeders feeding dikes may have been ≤ 2 km in diameter. Stable paleomagnetic vectors, in some cases verified by reversal tests, are retained by magnetite and titanomagnetite. In all specimens, the stable components were isolated by three cycles of low-temperature demagnetization (LTD) followed by ≥ 10 steps of incremental thermal demagnetization (TD). 47% of primary A-components [338.2 /+ 57.2 n = 207, α95 = 3.9; mean TUB = 397 ± 8 °C] are overprinted by a B-component [341.4 /+ 63.5, n = 96, α95 = 8.7; mean TUB = 182 ± 11 °C]. A- and B-components are ubiquitous and shared equally by the N–S and NE–SW striking dikes. A-component unblocking temperatures (TUB) are zoned subparallel to the fossil spreading axis. Their spatial pattern is consistent with chemical remagnetization at some certain off-axis distance determined by sea-floor spreading. A-components indicate less microplate rotation and more northerly palaeolatitudes that are consistent with metamorphic remagnetization after some spreading from the ridge-axis. Thus, their magnetizations are younger than those of the overlying volcanic sequence for which ChRMs are commonly reported as 274 /+ 33 (88 Ma).  相似文献   

7.
The Late Middle Permian ( 260 Ma) Emeishan large igneous province in SW China contains two magmatic series, one comprising high-Ti basalts and Fe-rich gabbroic and syenitic intrusions, the other low-Ti basalts and mafic–ultramafic intrusions. The Fe-rich gabbros are spatially and temporally associated with syenites. Each series is associated with a distinctive type of mineralization, the first with giant Fe–Ti–V oxide ore deposits such as Panzhihua and Baima, the second with Ni–Cu–(PGE) sulfide deposits such as Jinbaoshan, Limahe and Zhubu. New SHRIMP zircon U–Pb isotopic data yielded 263 ± 3 Ma for the Limahe intrusion, 261 ± 2 Ma for the Zhubu intrusion and 262 ± 2 Ma for a syenitic intrusion. These new age dates, together with previously reported SHRIMP zircon U–Pb ages, suggest that all these intrusions are contemporaneous with the Emeishan flood basalts and formed during a major igneous event at ca. 260 Ma.The oxide-bearing intrusions have higher Al2O3, FeO (as total iron) and total alkalis (Na2O + K2O) but lower MgO than the sulfide-bearing intrusions. All intrusions are variably enriched in LREE relative to HREE. The oxide-bearing intrusions display positive Nb- and Ti-anomalies and in certain cases negative Zr–Hf anomalies, whereas the sulfide-bearing intrusions have obvious negative Nb- and Ti-anomalies, a feature of crustal contamination. Individual intrusions have relatively small ranges of Nd(t) values. All the intrusions, however, have Nd(t) values ranging from − 3.9 to + 4.6, and initial 87Sr/86Sr ratios from 0.7039 to 0.7105. The syenites have very low MgO (< 2 wt.%) but highly variable Fe2O3 (2.5 to 13 wt.%) with initial 87Sr/86Sr ratios ranging from 0.7039 to 0.7089. Magmas from both series could have derived by melting of a heterogeneous mantle plume: the high-Ti series from a Fe-rich, more fertile source and the low-Ti series from a Fe-poor, more refractory source. In addition, the low-Ti series underwent significant crustal contamination. The two magma series evolved along different paths that led to distinct mineralization styles.  相似文献   

8.
Adakitic intrusive rocks of  430–450 Ma were discovered in the North Qilian orogenic belt, the western section of the Central Orogenic System (COS) in China. These adakitic rocks were lower crust melts rather than slab melts as indicated by their crustal Ce/Pb, Nb/U, Ti/Eu, and Nd/Sm ratios and radiogenically enriched (87Sr/86Sr)i of 0.7053–0.7066 and εNd(t) of − 0.9 to − 1.7. While they are all characterized by low Yb (< 1.1 ppm) and Y (< 11.5 ppm) abundances with high Sr/Y (> 65) and (La/Yb)N (> 13.7) ratios, these adakitic rocks are classified into the low-MgO–Ni–Cr and high-MgO–Ni–Cr groups. The low-MgO samples were derived from partial melting of thickened lower crust, whereas the high-MgO samples were melts from delaminated lower crust, which subsequently interacted with mantle peridotite upon ascent. Adakitic rocks from the adjacent North Qinling orogenic belt also originated from thickened lower crust at  430 Ma. In addition, the North Qilian and North Qinling orogenic belts both consist of lithological assemblages varying from subduction-accretionary complexes at south to central arc assemblages, which include adakitic rocks, then to backarc phases at north. Such a sequence reflects northward subduction of the Qilian and Qinling oceans. In these two orogenic belts, the occurrence of adakitic rocks of common origin and ages together with the similarities in tectonic configurations and lithological assemblages are considered to be the evidence for the continuity between eastern Qilian and western Qinling, forming a > 1000 km Early Paleozoic orogenic belt. In such a tectonic configuration, the Qilian and Qinling oceans that subducted from south possibly represent parts of the large “Proto-Tethyan Ocean”. This inference is supported by the coexistence of Early Paleozoic coral and trilobite specimens from Asia, America and Australia in the North Qilian orogenic belt. Post-400 Ma volcanic rocks occur in the North Qinling orogenic belt but are absent in the North Qilian orogenic belt, indicating that these two orogenic belts underwent distinct evolution history after the closure of the Proto-Tethyan Ocean ( 420 Ma).  相似文献   

9.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   

10.
The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwest China. To constrain the age of a number of the major granitic plutons from the Yidun Arc, laser ablation ICP-MS U/Pb analysis of zircon was conducted. Hafnium isotope data was also acquired through laser-ablation multicollector ICPMS analysis of zircon, with the aim of gaining insight into the age and nature of the source region of the plutons. Three age groups have been identified from seven granite samples: Early–Middle Triassic ( 245 to 229 Ma), Late Triassic ( 219 to 216 Ma) and Cretaceous ( 105 to 95 Ma). Hafnium analysis shows the Triassic granites to have negative and variable εHf values and Mesoproterozoic ( 1.6 Ga) depleted-mantle model ages, which is interpreted to reflect derivation from an isotopically heterogeneous, largely crustal source. The Cretaceous granite shows higher and less variable εHf values and slightly younger model ages ( 1.3 Ga), and is interpreted to be derived from melting of a more homogeneous crustal source. A depleted-mantle model age of  1.5 Ga is calculated from the pooled Triassic and Cretaceous samples. The source region for these magmas may be tentatively correlated with Mesoproterozoic material of the Yangtze Craton, which has been suggested to underlie the Yidun Arc; however, further work is necessary to demonstrate this suggestion.  相似文献   

11.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

12.
Frictional sliding of gabbro gouge under hydrothermal conditions   总被引:12,自引:0,他引:12  
We investigated the frictional sliding behaviour of gabbro gouge under hydrothermal conditions. Experiments were performed on 1-mm-thick gabbro gouge sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) in a triaxial testing system with argon gas as the confining medium. In the first series, experiments were conducted under effective normal stresses of 200 MPa and 300 MPa respectively, with pore pressure of 10 MPa. For temperature over 400 °C, pore pressure of 30 MPa was also applied to implement supercritical water conditions. At temperatures up to 615 °C, slip rate steps ranging from 0.0488 μm/s to 1.22 μm/s were applied to obtain the rate dependence of friction.At 200 MPa effective normal stress and a pore pressure of 10 MPa, the steady state rate dependence ab shows velocity-weakening behaviour for temperatures between  200 and  310 °C. The higher temperature limit for velocity-weakening behaviour to occur extends up to  510 °C under supercritical water conditions with a pore pressure of 30 MPa. For the limited sliding distance in our experiments, only velocity-strengthening behaviour occurred at 300 MPa effective normal stress. Considering the limited displacement (< 3.5 mm), velocity-weakening behaviour may not be excluded in the high effective normal stress case for temperature below  510 °C.The coefficient of friction shows an increasing trend with increasing temperature in the low temperature range. The cut-off temperatures for the increasing trend are  250 °C and  440 °C, respectively for the 200 MPa and 300 MPa effective normal stress cases. Above the cut-off temperatures, the coefficient of friction at 1.83 mm permanent displacement varies around an average of 0.73, which is identical to the average for the oven-dried case [He, C., Yao, W., Wang, Z., Zhou, Y., 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures. Tectonophysics 427, 217–229, doi:10.1016/j.tecto.2006.05.023]. Together with the small value of rate dependence (ab < 0.0073) for the whole temperature range, these results indicate the absence of fluid-assisted creep.With the result of our experiments as a constraint on strength of frictional sliding, comparison between converted strength for strike–slip faults and creep strength of gabbro-like rocks implies fracturing and faulting behaviours in the lower crust of a cool area (Zhangbei) in North China.  相似文献   

13.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

14.
High-resolution pollen analyses ( 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm  250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.  相似文献   

15.
This study provides evidence for the existence of halite and sylvite solid inclusions in igneous quartz and feldspars, the first to be reported in intrusive rocks, and to partially constrain the physicochemical environment that lets halides crystallize under magmatic conditions.Halite and sylvite solid inclusions were found included in quartz and feldspars from a micrographic–granophyric assemblage in a miarolitic aplite and, rarer, in alkali-feldspar from a miarolitic monzogranite. Monzogranite and aplite represent I-type, K-enriched postcollisional rocks of the Late Cambrian–Early Ordovician Sierra Norte–Ambargasta batholith in the Eastern Sierras Pampeanas. Both granitoids fall among the most evolved felsic rocks of the batholith, with aplite approaching haplogranitic compositions. Halite is far more common than sylvite and the presence and distribution of one or both halides are erratic within the felsic intrusive bodies. Halides occur as small skeletal grains, commonly in cross-shaped aggregates of less than 50 μm. No K or Na was found at the detection limits of EDS in either halite or sylvite respectively. Textural relationships suggest that the alkali-chlorides separated from the melt near the minima along the quartz–feldspar cotectics of PH2O > 160 < 200 MPa in a silica-, and potassium-rich magmatic system at approximately 750–700 °C, prior to the H2O-vapor saturated miarole-forming stage.Computed ratios for the magmatic volatile phase (MVP) coexisting with melt at the early stage of aplite crystallization are: NaCl/HCl = 0.11–0.97 and KCl/HCl = 0.24–1.62, being the highest range of values (0.79–0.97 and 1.45–1.62, respectively) found in those alkali-chloride-bearing samples. Maximum HCl/ΣCl(MVP) (0.28 to 0.31) indicates higher total Cl concentration in the MVP of alkali-chloride-bearing aplites, which is much higher in the halite-free aplite samples (HCl/ΣCl(MVP) = 0.59 to 0.74). One miarolitic monzogranite sample, where halite solid inclusions are present, also yielded the highest ratios for NaCl/HCl(MVP) (0.91) and KCl/HCl(MVP) (1.46), and the HCl/ΣCl(MVP) is 0.30. A high HCl concentration in the fluid phase is suggested by the log f(HF)/f(H2O) = − 4.75 to − 4.95, log f(HCl)/f(H2O) = − 3.73 to − 3.86, and log f(HF)/f(HCl) = − 0.88 to − 1.22, computed at 750 °C after biotite composition. The Cl concentrations at 800 °C, computed with a Dv/lCl = 0.84 + 26.6P (P at 200 MPa), yielded values within the range of  70 to 700 ppm Cl in the melt and  4000 to 40 000 ppm Cl in the coexisting MVP. The preferential partitioning of Cl in the vapor phase is controlled by the Dv/lCl; however, the low concentration of Cl in the melt suggests that high concentrations of Cl are not necessary to saturate the melt in NaCl or KCl.Cl-saturation of the melt and coexisting MVP might have been produced by a drop in Cl solubility due to the near-haplogranitic composition of the granitoids after extreme fractionation, probably enhanced by fluctuating reductions of the emplacement pressure in the brittle monzogranite host. Liquid immiscibility, based in the differential viscosity and density among alkali-chloride saturated hydrosaline melt, aluminosilicate felsic melt, and H2O-rich volatiles is likely to have crystallized halite and sylvite from exsolved hydrosaline melt. High degrees of undercooling might have been important at the time of alkali-chloride exsolution. The effectiveness of alkali-chloride separation from the melt at magmatic temperatures is in line with the interpretation of “halite subtraction” as a necessary process to understand the origin of the “halite trend” in highly saline fluid inclusions from porphyry copper and other hydrothermal mineralizations, despite the absence of the latter in the Cerro Baritina aplites, where this process preceded the exsolution of halite-undersaturated fluids.Pervasive alteration of the monzogranite country rock as alkali-metasomatic mineral assemblages, the mineral chemistry of some species, and the association of weak molybdenite mineralization are compatible with the activity of alkaline hypersaline fluids, most likely exsolved during the earliest stages of aplite consolidation.  相似文献   

16.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

17.
Picea is an important taxon in late-glacial pollen records from eastern North America, but little is known about which species of Picea were present. We apply a recently developed palynological method for discriminating the three Picea species in eastern North America to three records from New England. Picea glauca was dominant at  14,500–14,000 cal yr BP, followed by a transition to Picea mariana between  14,000 and 13,500 cal yr BP. Comparison of the pollen data with hydrogen isotope data shows clearly that this transition began before the beginning of the Younger Dryas Chronozone. The ecological changes of the late-glacial interval were not a simple oscillation in the position of a single species' range, but rather major changes in vegetation structure and composition occurring during an interval of variations in several environmental factors, including climate, edaphic conditions, and atmospheric CO2 levels.  相似文献   

18.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

19.
M. Murru  R. Console  G. Falcone   《Tectonophysics》2009,470(3-4):214-223
We have applied an earthquake clustering epidemic model to real time data at the Italian Earthquake Data Center operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for short-term forecasting of moderate and large earthquakes in Italy. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes. The model uses earthquake data only, with no explicit use of tectonic, geologic, or geodetic information. The forecasts are displayed as time-dependent maps showing both the expected rate density of Ml ≥ 4.0 earthquakes and the probability of ground shaking exceeding Modified Mercalli Intensity VI (PGA ≥ 0.01 g) in an area of 100 × 100 km2 around the zone of maximum expected rate density in the following 24 h. For testing purposes, the overall probability of occurrence of an Ml ≥ 4.5 earthquake in the same area of 100 × 100 km2 is also estimated. The whole procedure is tested in real time, for internal use only, at the INGV Earthquake Data Center.Forecast verification procedures have been carried out in forward-retrospective way on the 2006–2007 INGV data set, making use of statistical tools as the Relative Operating Characteristics (ROC) diagrams. These procedures show that the clustering epidemic model performs up to several hundred times better than a simple random forecasting hypothesis. The seismic hazard modeling approach so developed, after a suitable period of testing and refinement, is expected to provide a useful contribution to real time earthquake hazard assessment, even with a possible practical application for decision making and public information.  相似文献   

20.
The 92.5 Ma Fort Knox granodiorite stock, near the western end of the Fairbanks Belt in the Yukon–Tanana terrane (YTT) of central Alaska, hosts a world-class gold mine. The stock has been analysed paleomagnetically using thermal and alternating-field step demagnetization and isothermal remanence methods. This pluton retains a primary thermoremanent magnetization at 18 sites (232 specimens) that resides mainly in single-to pseudosingle-domain magnetite with a direction of D = 228.8°, I = 84.3° (N = 18, k = 130, α95 = 3.0°), giving a paleopole at 56.5°N, 197.1°E (dp = 5.9°, dm = 5.8°). The pluton's host rock, the Fairbanks schist, does not retain a stable coherent remanence. Relative to the North American craton, the stock's paleoinclination indicates that the Fairbanks Belt has undergone nonsignificant poleward (northwesterly) translation of 25 ± 750 km only. Analysed in concert with the few available paleoinclinations available for the YTT in Yukon, the paleoinclination suggests further that the YTT has undergone only  250 to 450 km of dextral displacement along the Tintina fault in the past  100 Ma and, therefore, is parautocthonous since the mid-Cretaceous. The stock's paleodeclination records 121 ± 35° of counterclockwise rotation relative to the North American craton. Consideration of models published for Alaska's tectonic evolution suggests that this paleodeclination discordance is caused by rotations associated with the opening of the Canada Basin, with dextral displacement on the Tintina fault, and with development of the western Alaskan orocline. Thus the paleomagnetic results for the Fort Knox stock support a thin-skin tectonic model for the accretion of the YTT and Intermontane Belt terranes to the northern Cordillera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号